Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 14:54, курсовая работа
ТЕОРИЯ ГРАФОВ - это область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Теория графов находится сейчас в самом расцвете. Обычно её относят к топологии (потому что во многих случаях рассматриваются лишь топологические свойства графов), однако она пересекается со многими разделами теории множеств, комбинаторной математики, алгебры, геометрии, теории матриц, теории игр, математической логики и многих других математических дисциплин. Основной объект теории графов-граф и его обобщения.
Введение
I. Основные понятия
1.Эйлеровы графы.
2. Кротчайшие пути.
3. Деревья.
II.Задача коммивояжера.
1.Общие описание.
2.Методы решения ЗК.
а. Жадный алгоритм.
б. Деревянный алгоритм.
в. Метод ветвей и границ.
III. Выводы.
Литература.
Таким образом, для решения ЗК нужно n раз применить алгоритм Дейкстры следующим образом.
Возьмём произвольную пару вершин
j,k. Исключим непосредственное ребро C[j,k]. С помощью алгоритма Дейкстры найдём кратчайшее расстояние между городами j..k. Пусть это расстояние включает некоторый город m. Имеем часть тура j,m,k. Теперь для каждой пары соседних городов (в данном примере – для j,m и m,k) удалим соответственное ребро и найдём кратчайшее расстояние. При этом в кратчайшее расстояние не должен входить уже использованный город.
Далее аналогично находим кратчайшее расстояние между парами вершин алгоритмом Дейкстры, до тех пор, пока все вершины не будут задействованы. Соединим последнюю вершину с первой и получим тур. Чаще всего это последнее ребро оказывается очень большим, и тур получается с погрешностью, однако алгоритм Дейкстры можно отнести к приближённым алгоритмам.
III. Выводы
Литература