Автор работы: Пользователь скрыл имя, 09 Декабря 2012 в 21:39, реферат
Простейшие дифференциальные уравнения встречались уже в работах И. Ньютона и Г. Лейбница; термин «дифференциальные уравнения» принадлежит Лейбницу. Ньютон при создании исчисления «флюксий» и «флюент» ставил две задачи: по данному соотношению между флюентами определить соотношение между флюксиями; по данному уравнению, содержащему флюксии, найти соотношение между флюентами. С современной точки зрения, первая из этих задач (вычисление по функциям их производных) относится к дифференциальному исчислению, а вторая составляет содержание теории обыкновенных дифференциальных уравнений.
Введение……………………………………………………………….……3
Основные понятия и определения………………………………….……..4
Существование решения дифференциального уравнения первого порядка…………………………….……....…..6
Дифференциальное уравнение первого порядка с разделяющимися переменными……………………….……....…...12
Однородное дифференциальное уравнение первого порядка…………………………………………………………………..…16
Линейное дифференциальное уравнение первого порядка…………………………………………………………….…....….18
Заключение…………………………………………………………….…..20
Литература………..………………………………………………………..21
РЕФЕРАТ
на тему:
«Дифференциальные уравнения
2012
Содержание
Введение.
При решении различных задач математики, физики, химии и других наук часто пользуются математическими моделями в виде уравнений, связывающих независимую переменную, искомую функцию и ее производные. Такие уравнения называются дифференциальными.
Простейшие дифференциальные уравнения встречались уже в работах И. Ньютона и Г. Лейбница; термин «дифференциальные уравнения» принадлежит Лейбницу. Ньютон при создании исчисления «флюксий» и «флюент» ставил две задачи: по данному соотношению между флюентами определить соотношение между флюксиями; по данному уравнению, содержащему флюксии, найти соотношение между флюентами. С современной точки зрения, первая из этих задач (вычисление по функциям их производных) относится к дифференциальному исчислению, а вторая составляет содержание теории обыкновенных дифференциальных уравнений. Задачу нахождения неопределённого интеграла F(x) функции f(x) Ньютон рассматривал просто как частный случай его второй задачи. Такой подход был для Ньютона как создателя основ математического естествознания вполне оправданным: в очень большом числе случаев законы природы, управляющие теми или иными процессами, выражаются в форме дифференциальных уравнений, а расчёт течения этих процессов сводится к решению дифференциального уравнения.
Основное открытие Ньютона, то, которое он счел нужным засекретить и опубликовал лишь в виде анаграммы, состоит в следующем: «Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa». В переводе на современный математический язык это означает: «Полезно решать дифференциальные уравнения». В настоящее время теория дифференциальных уравнений представляет собой трудно обозримый конгломерат большого количества разнообразных идей и методов, в высшей степени полезный для всевозможных приложений и постоянно стимулирующий теоретические исследования во всех отделах математики.
Основные понятия и
Определение. Уравнение, связывающее функцию y, ее аргумент x и ее производные, называется обыкновенным дифференциальным уравнением.
Обыкновенное дифференциальное уравнение символически можно записать в виде
или .
Определение. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение.
Например:
А) является дифференциальным уравнением 1-го порядка;
Б) является дифференциальным уравнением 2-го порядка;
В) является дифференциальным уравнением n-го порядка.
Определение. Решением дифференциального уравнения называется всякая функция y=f(x), которая, будучи подставлена в уравнение, обращает его в тождество.
Например, пусть дано дифференциальной уравнение .
Тогда любая функция вида y=c1sinx+c2cosx, где c1, c2 – произвольные постоянные, является решением этого уравнения.
Действительно,
дифференцируя уравнение y=c1si
Процесс
решения дифференциального
В общем
случае обыкновенному
отвечает семейство решений, содержащих n параметров.
Определение. Общим решением дифференциального уравнения n-го порядка называется функция y=f(x, c1, c2, …, cn), зависящая от аргумента x и n произвольных постоянных c1, c2, …, cn, которая будучи подставлена в уравнение обращает его в тождество.
Отметим,
что эта функция может
Общее решение
дифференциального уравнения
Чтобы из
общего уравнения выделить некоторое
конкретное частное решение
,
,
,
………………………………
,
решая которые относительно c1, c2 , …, cn находят значения этих постоянных.
Например,
для дифференциального
Существование решения дифференциального уравнения первого порядка.
Задано дифференциальное уравнение вида
или, иначе, .
Пусть y=y(x) – решение данного уравнения, удовлетворяющее начальному условию y(x0)=y0. Тогда из следует, что f(x,y(x)) – производная функции y(x) и, следовательно, y(x) – первообразная для f(x,y(x)). Если F(x) – некоторая другая первообразная для f(x,y(x)), то , как известно, y(x)=F(x)+c0. Из y(x0)=y0, y(x0)=F(x0)+c0 получаем c0=y0-F(x0), т.е. y(x)=F(x)-F(x0)+y0.
Семейство всех первообразных для f(x,y(x)) представляется неопределенным интегралом . Тогда разность F(x)-F(x0) равна значению определенного интеграла ,
И, следовательно, получаем
,
т.е. y(x) является решением интегрального уравнения
.
Задача поиска решения дифференциального уравнения , удовлетворяющего начальному условию y(x0)=y0, получила в литературе название задачи Коши.
Первое доказательство существования и единственности решения дифференциального уравнения было получено в 1820-1830 г.г. и связано с именем Коши (1789-1857).
Теорема. Пусть задано уравнение и начальные значения x0,y0.
Тогда если
А) функция f(x,y) непрерывна по обеим переменным x и y в замкнутой области ;
Б) функция f(x,y) удовлетворяет в областиR по переменной y условию Липшица, т.е. , где L – постоянная;
То существует единственное решение y=y(x) указанного уравнения, удовлетворяющее начальному условию y(x0)=y0 и являющееся непрерывно дифференцируемым в интервале , где .
Последовательность функций, дающих приближенное решение уравнения, строится по правилу:
,
,
………………………………
.
Далее можно показать, что функция дает единственное решение дифференциального уравнения в промежутке .
Выше
был рассмотрен случай дифференциального
уравнения первого порядка
Более общим видом является случай уравнения вида , не разрешимого относительно производной y/.
Допустим, что данное уравнение может быть разрешено относительно y/, и в общем случае это дает несколько вещественных уравнений (k=1,2,…,m).
Если при этом каждая из функций (k=1,2,…,m) удовлетворяет теореме существования и единственности решения, то через точку (x0,y0) будет проходить m интегральных кривых уравнения . Пусть при этом каждая точка кривой имеет свой наклон касательной, отличный от других кривых. В этом случае также говорят, что задача Коши имеет единственное решение. Общим решением уравнения называют совокупность всех общих решений каждого из уравнений (k=1,2,…,m), т.е. решения y=Yk(x,c) (k=1,2,…,m).
Пример. Рассматривается дифференциальное уравнение вида . Разрешая его относительно y/ получаем два уравнения y/=1 и y/=-1, т.е. через каждую точку плоскости xOy проходят две интегральные кривые, касательные к которым имеют два разных угла наклона к оси Ox в 450 и 1350. Общим решением уравнения будет семейство интегральных кривых y=x+c и y=-x+c.
Особым решением дифференциального уравнения
или
называется решением y=y(x), которое во всех своих точках не обладает свойством единственности. Через каждую точку такого решения проходит не менее двух интегральных кривых, имеющих одинаковое направление касательной.
Отметим, что из сказанного выше следует, что дифференциальное уравнение может иметь решения не являющиеся ни частными, ни особыми, а именно, если эти решения получаются склеиванием кусков из частных и особых решений.
Особые решения
Пусть рассматривается дифференциальное уравнение первого порядка общего вида F(x,y,y/)=0.
Тогда существование его особого решения прежде всего может быть связано с условием , не обеспечивающим представление y/ как неявной функции переменных x и y, задаваемой уравнением F(x,y,y/)=0.
Таким образом, формируя систему уравнений
,
и исключая из нее переменную y/, получаем функцию y=y(x), которая может дать особое решение дифференциального уравнения F(x,y,y/)=0.
Определение. Кривая, получаемая исключением параметра p из системы уравнений
,
называется дискретной кривой уравнения F(x,y,y/)=0.
Для того, чтобы дискретная кривая давала особое решение дифференциального уравнения, остается проверить, что она удовлетворяет уравнению F(x,y,y/)=0, и что через каждую ее точку проходит хотя бы одна интегральная кривая общего решения этого уравнения, т.е. проверить, что в точках дискретной кривой нарушается свойство единственности решения дифференциального уравнения.
Пример 1. Дано уравнение .
Как было указано выше его особое решение дается уравнениями y=x+c и y=-x+c. Опреляя для него дискретную кривую имеем систему уравнений
.
Очевидно,
данная система решения не имеет,
поэтому рассматриваемое
Пример 2. Дано уравнение .
Для него , т.е. дискретной кривой нет. Из и условия , получаем точки кривой y=0, в которых нарушены условия теоремы Коши.
Однако, в данном случае кривая y=0 не удовлетворяет дифференциальному уравнению. Следовательно, это уравнение особых решений не имеет.
Особым решением дифференциального уравнения довольно часто бывают огибающие семейства его интегральных кривых.
Определение. Кривая y=y(x) называется огибающей семейства интегральных кривых интегрального уравнения, задаваемого общим решением Ф(x,y,c)=0, если в каждой точке она касается одной из кривых данного семейства, т.е. имеет с ней в этой точке общую касательную.
Для нахождения огибающей может быть использован следующий подход.
Пусть огибающая задана параметрически уравнениями x=x(t),y=y(t).
Со значением параметра t можно связать значение постоянной c, отвечающей той интегральной кривой семейства Ф(x,y,c)=0, которая касается огибающей в точке M(x(t),y(t)), т.е. величину c можем рассматривать как функцию параметра t, а именно c=c(t).
Подставляя функции x=x(t),y=y(t) и c=c(t) в Ф(x,y,c)=0, получаем тождество
.
Предполагая, что Ф(x,y,c) имеет непрерывные частные производные первого порядка, из тождества вытекает .
Покажем, что . Действительно, k-угловой коэффициент касательной для огибающей в точке x0=x(t0), y0=y(t0) при t=t0 равен
Информация о работе Дифференциальные уравнения первого порядка