Автор работы: Пользователь скрыл имя, 13 Мая 2013 в 07:22, реферат
Описание метода
Составим функцию Лагранжа в виде линейной комбинации функции и функций , взятых с коэффициентами, называемыми множителями Лагранжа — :...
где .... Составим систему из уравнений, приравняв к нулю частные производные функции Лагранжа по и .
Если полученная система имеет решение относительно параметров и , тогда точка может быть условным экстремумом, то есть решением исходной задачи. Заметим, что это условие носит необходимый, но не достаточный характер.
Метод множителей Лагранжа, метод нахождения условного экстремума функции , где , относительно ограничений , где меняется от единицы до .
Описание метода
где .
Нижеприведенное обоснование метода множителей Лагранжа не является его строгим доказательством. Оно содержит эвристические рассуждения, помогающие понять геометрический смысл метода.
Линии уровня и кривая .
Пусть требуется найти экстремум некоторой функции двух переменных при условии, задаваемом уравнением . Мы будем считать, что все функции непрерывно дифференцируемы, и данное уравнение задает гладкую кривую на плоскости . Тогда задача сводится к нахождению экстремума функции на кривой . Будем также считать, что не проходит через точки, в которых градиент обращается в .
Нарисуем на плоскости линии уровня функции (то есть кривые ). Из геометрических соображений видно, что экстремумом функции на кривой могут быть только точки, в которых касательные к и соответствующей линии уровня совпадают. Действительно, если кривая пересекает линию уровня в точке трансверсально (то есть под некоторым ненулевым углом), то двигаясь по кривой из точки мы можем попасть как на линии уровня, соответствующие большему значению , так и меньшему. Следовательно, такая точка не может быть точкой экстремума.
Тем самым, необходимым условием экстремума в нашем случае будет совпадение касательных. Чтобы записать его в аналитической форме, заметим, что оно эквивалентно параллельности градиентов функций и в данной точке, поскольку вектор градиента перпендикулярен касательной к линии уровня. Это условие выражается в следующей форме:
где — некоторое число, отличное от нуля, и являющееся множителем Лагранжа.
Рассмотрим теперь функцию Лагранжа , зависящую от и :
Необходимым условием ее экстремума является равенство нулю градиента . В соответствии с правилами дифференцирования, оно записывается в виде
Мы получили систему, первые два уравнения которой эквивалентны необходимому условию локального экстремума (1), а третье — уравнению . Из нее можно найти . При этом , поскольку в противном случае градиент функции обращается в нуль в точке , что противоречит нашим предположениям. Следует заметить, что найденные таким образом точки могут и не являться искомыми точками условного экстремума — рассмотренное условие носит необходимый, но не достаточный характер. Нахождение условного экстремума с помощью вспомогательной функции и составляет основу метода множителей Лагранжа, примененного здесь для простейшего случая двух переменных. Оказывается, вышеприведенные рассуждения обобщаются на случай произвольного числа переменных и уравнений, задающих условия.
На основе метода множителей Лагранжа
можно доказать и некоторые достаточные
условия для условного экстрему
Применение
Метод множителей Лагранжа применяется при решении задач нелинейного программирования, возникающих во многих областях (например, в экономике).
Основной метод решения задачи об оптимизации качества кодирования аудио и видео информации при заданном среднем битрейте (оптимизация искажений — англ. Rate-Distortion optimization).
Литература
Зорич В. А. Математический анализ. Часть 1. — изд. 2-е, испр. и доп. — М.: ФАЗИС, 1997.
Акулич И.Л. Глава 3. Задачи нелинейного программирования // Математическое программирование в примерах и задачах. — М.: Высшая школа, 1986. — 319 с. — ISBN 5-06-002663-9.