Обучение детей счету

Автор работы: Пользователь скрыл имя, 21 Октября 2012 в 16:41, реферат

Краткое описание

Целью данной работы является анализ методов и приемов при формировании элементарных математических представлений.
Задачи:
1. Провести отбор литературы по данной тематике.
2. Рассмотреть работу по формированию элементарных математических представлений.
3. Проанализировать все методы и приёмы в педагогическом воздействии.

Содержание

Введение 3
1. Сущность и основные классификации методов воспитания ………..….……5
2. Характеристика методов математического развития …………………….….9
2.1 Практические методы………………………………………………………… 9
2.2 Игра - как метод математического развития …………………….………....12
2.3 Наглядные и словесные методы …………………………………………….14
Заключение ………………………………………………………………………..23
Список литературы ……………………………………………………………….24
Приложение ……………………………………………………………………… 26

Вложенные файлы: 1 файл

Обучение детей счету.docx

— 48.74 Кб (Скачать файл)

Продуктивные упражнения характеризуются тем, что способ действия дети должны полностью или  частично открыть сами. Они развивают  самостоятельность мышления, вырабатывают целенаправленность и целеустремлённость. Воспитатель обычно говорит, что  надо делать, но не сообщает и не демонстрирует  способа действия. При выполнении упражнений ребёнок прибегает к  мыслительным и практическим пробам, выдвигает предположения и проверяет  их, мобилизирует имеющиеся знания, учится использовать их в новой ситуации, проявляет сообразительность, смекалку. При выполнении таких упражнений воспитатель оказывает помощь лишь в косвенной форме, предлагает детям подумать ещё раз попробовать, одобряет правильные действия, напоминает об аналогичных упражнениях, которые ребёнок уже выполнял и т.д. [11, 116]

Однако излишнее использование  практических методов, задержка на уровне практических действий может отрицательно сказываться на ребёнке. [13, 99]

2.2 Игра - как метод  математического развития

При формировании элементарных математических представлений игра выступает, как метод обучения и  может быть отнесена к практическим методам.

Широко используются разнообразные  дидактические игры. Благодаря обучающей  задаче, облечённой в игровую форму (игровой замысел), игровым действиям  и правилам ребёнок непреднамеренно  усваивает определённую «порцию» познавательного  содержания. Все виды дидактических  игр (предметные, настольно-печатные, словесные  и др.) являются эффективным средством  и методом формирования элементарных математических представлений у  детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий  время. Все они выполняют основные функции обучения - образовательную, воспитательную и развивающую. [11, 117]

Все дидактические игры по формированию элементарных математических представлений разделены на несколько  групп:

1. Игры с цифрами и  числами

2. Игры путешествие во  времени

3. Игры на ориентировки  в пространстве

4. Игры с геометрическими  фигурами (см. Приложение 2)

5. Игры на логическое  мышление 

Знания в виде способов действий и соответствующих им представлений  ребёнок получает первоначально  вне игры, в играх лишь создаются  благоприятные условия для их уточнения, закрепления, систематизации. Структура большинства дидактических  игр не позволяет сообщить детям  новые знания, однако это не означает что в принципе такое невозможно. [11, 118]

В настоящее время разработана  система так называемых обучающих  игр. В отличие от существующих они позволяют формировать у детей принципиально новые знания, которые нельзя получить непосредственно из окружающей действительности, так как их содержанием являются абстрактные понятия математики. Основной их целью является подготовка мышления дошкольника к восприятию фундаментальных математических понятий: «множество и операции над множествами», «функция», «алгоритм» и т. д. В этих играх используется специфический дидактический материал, подобранный по определённым признакам. Моделируя математические понятия, он позволяет выполнять логические операции: разбиение множества на классы, отыскание объектов по необходимым и достаточным критериям и т. д. Игры, содержание которых ориентировано на формирование математических понятий, способствуют абстрагированию в мыслительной деятельности, учат оперировать обобщёнными представлениями, формируют логические структуры мышления. [3, 94]

Дидактические игры выполняют  обучающую функцию успешнее, если они применяются в системе, предполагающей вариативность, постепенное усложнение и по содержанию, и по структуре, связь с другими методами и  формами работы по формированию элементарных математических представлений.

При подборе дидактических  игр для занятий, индивидуальной работы с детьми воспитатель обращается к разнообразным источникам, использует народные и авторские игры, с предметами и без них.

Дидактические игры могут  применяться в качестве одного из методов проведения занятий, индивидуальной работы, быть формой организации самостоятельной  познавательной деятельности детей.

Игра как метод обучения и формирования элементарных математических представлений предполагает использование  отдельных элементов разных видов  игр (сюжетно-ролевой, игры-драматизации, подвижной и т. д.), игровых приёмов (сюрпризный момент, соревнование, поиск  и т. д.), органическое сочетание игрового и дидактического начала в виде руководящей, обучающей роли взрослого и возрастающей познавательной активности и самостоятельности  ребёнка. [11, 118-119]

Обеспечить всестороннюю математическую подготовку детей всё-таки удаётся при умелом сочетании  игровых методов и методов  прямого обучения. Хотя понятно, что  игра увлекает детей, не перегружает  их умственно и физически. Постепенный  переход от интереса детей к игре к интересу к учению совершенно естествен. [13, 102]

2.3 Наглядные и  словесные методы

Наглядные и словесные  методы в обучении математике не являются самостоятельными. Они сопутствуют  практическим и игровым методам. Но это отнюдь не умаляет их значения в математическом развитии детей.

К наглядным методам обучения относятся: демонстрация объектов и  иллюстраций, наблюдение, показ, рассматривание таблиц, моделей. К словесным методам  относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические  игры. [13, 99-100]

1. Демонстрация воспитателем  способа действия в сочетании  с объяснением. Это основной  приём обучения, он носит наглядно-действенный  характер, выполняется с помощью  разнообразных дидактических средств,  даёт возможность формировать  навыки и умения у детей.  К нему, как правило, предъявляют  следующие требования:

чёткость, «пошаговая» расчленённость демонстрации;

согласованность действий со словесными пояснениями;

точность, краткость и  выразительность речи, сопровождающей показ способов действия;

активизация восприятия, мышления и речи детей.

Этот приём чаще всего  используется при сообщении новых  знаний.

2. Инструкция по выполнению  самостоятельных заданий (упражнений). Приём связан с показом воспитателем  способов действия и вытекает  из него. Инструкция сообщает, что,  как и в какой последовательность  надо делать, чтобы получился  необходимый результат.

В старших группах инструкция носит целостный характер, даётся полностью до выполнения задания, в  младших - сочетается с ходом его  выполнения, предваряя каждое новое  действие.

3. Пояснения, разъяснения,  указания. Эти словесные приёмы  используются воспитателем при  демонстрации способов действия  или в ходе выполнения детьми  задания, чтобы предупредить ошибки, преодолеть затруднения и т.  д. Они должны быть краткими, конкретными, живыми и образными. [13, 119]

«Слово-Стекло», - говорил  лингвист А.А. Потебня. Через слово должно всегда просвечивать его предметное содержание. Поэтому слово воспитателя должно быть всегда ясным и точным. [4, 146]

4. Вопросы к детям. Это  одно из основных приёмов формирования  элементарных математических представлений  у детей во всех возрастных  группах. Они могут быть:

репродуктивно - мнемические (Что это такое? Какого цвета флажки? И т. д.)

репродуктивно - познавательные (Сколько будет на полке кубиков, если я поставлю ещё один? И т. д.)

продуктивно - познавательные (Что надо сделать, чтобы кружков  стало поровну? И т. д.) [8, 43]

Вопросы активизируют восприятие, память, мышление, речь детей. При формировании элементарных математических представлений обычно используется серия вопросов, начиная от боле простых, направленных на описание конкретных признаков, свойств предметов, результатов практических действий, т. е. констатирующих факты, до более сложных, требующих установления связей, отношений, зависимостей, их обоснования и объяснения, использования простейших доказательств. Чаще всего такие вопросы задаются после демонстрации образца воспитателем или выполнения задания ребёнком. [6, 76]

Разные по характеру вопросы  вызывают различный тип познавательной деятельности: от репродуктивной, воспроизводящей  изученный материал, до продуктивной, направленной на решение проблемных задач.

Некоторые основные требования к вопросам воспитателя как методическому  приёму:

точность, конкретность и  лаконизм;

логическая последовательность;

разнообразие формулировок, т. е. об одном и том же следует  спрашивать по-разному;

оптимальное соотношение  репродуктивных и продуктивных вопросов в зависимости от возраста детей, изучаемого материала;

вопросы должны будить мысль  ребёнка, развивать его мышление, заставлять задумываться, анализировать, сравнивать, сопоставлять, обобщать;

количество вопросов должно быть небольшим, но достаточным, чтобы достичь поставленную дидактическую цель;

следует избегать подсказывающих и альтернативных вопросов.

Вопросы следует рассматривать  как эффективное средство активизации  познавательной деятельности детей. Они  предлагаются обычно всей группе, а  ответ даёт один ребёнок. В отдельных  случаях возможны и групповые  ответы, что характерно для младших  дошкольников.

Старших дошкольников необходимо учит формулировать вопросы самостоятельно. Педагог учит правильно формулировать  вопросы по результатам непосредственного  сравнения отдельных предметов, групп предметов и т. д., при  этом дети успешнее овладевают умением  задавать вопросы в тех случаях, когда они адресуются конкретному  лицу - воспитателю, товарищу, родителям.

Существуют также методические требования к ответам детей. Ответы должны быть:

кратким или полным в зависимости от характера вопроса;

самостоятельными и осознанными;

точными, ясными, достаточно громкими;

грамматически правильными

В работе с дошкольниками  воспитателю часто приходиться  прибегать к приёму переформулировки ответов, придавая им правильную форму.[11, 121]

Система вопросов и ответов  детей в педагогике называется беседой. [13, 101]

5. Словесные отчёты детей.  Этот методический приём складывается  из вопроса воспитателя, требующего  после выполнения детьми рассказать, что и как они делали и что получилось в итоге, и собственно детских ответов на вопрос. Слово помогает вычленить действие, осмыслить результат. На первых порах педагог помогает детям, даёт образец отчёта, постепенно они самостоятельно рассказывают о своих действиях, оперируя математическими представлениями.

6. Контроль и оценка. Эти  приёмы выступают в тесной  взаимосвязи друг с другом.

Контроль осуществляется при наблюдении за процессом выполнения детьми заданий, результатами их действий, ответами. Он сочетается с указаниями, пояснениями, разъяснениями, демонстрацией  способов действий взрослым в качестве образца, непосредственной помощью, включает исправление ошибок.

Исправление ошибок педагог  осуществляет в ходе индивидуальной и коллективной работы с детьми. Исправлению подлежат практически-действенные  и словесно-речевые ошибки. Воспитатель  должен разъяснить причины ошибок, обращать внимание на образец своей  речи или в качестве примера использовать лучшие действия и ответы других ребят. Постепенно педагог начинает сочетать контроль с само- и взаимоконтролем. Зная типичные ошибки, которые допускают  дети при счёте, измерении, простейших вычислениях и т. д., воспитатель  предупреждает их появление.

Оценке подлежат способы  и результаты действий, поведение  ребят. Оценка взрослого, приучающего  ориентироваться по образцу, сочетается с оценкой товарищей и самооценкой. Этот приём используется по ходу и  в конце выполняемых упражнений, проводимых игр, занятий.

Использование контроля и  оценки имеет свою специфику в  зависимости от возраста детей и  степени овладения ими знаниями и способами действий. Контроль с  процесса действий постепенно переносится  на результат, оценка становится более  дифференцированной и содержательной. Эти приёмы, кроме обучающей, выполняют и воспитательную функцию: воспитывают доброжелательное отношение к товарищу, желание и умение ему помочь, активность и т. д.

7. В ходе формирования  элементарных математических представлений  такие компоненты, как сравнение,  анализ, синтез, обобщение, выступают  не только как познавательные  процессы, или операции, но как  методические приёмы, определяющие  тот путь, по которому движется  мысль ребёнка при обучении, познании  нового.

В основе сравнения лежит  установление сходства и различий между  объектами. Дети сравнивают предметы по количеству, форме, величине, пространственному  расположению, интервалы времени - по длительности и т. д. Вначале их учат сравнивать минимальное количество предметов, затем число таких  предметов постепенно увеличивают  одновременно с уменьшением степени  контрастности сравниваемых признаков. Методический приём сравнения, к  которому педагог часто прибегает  в процессе формирования элементарных математических представлений у  детей, связан с анализом и синтезом.

Анализ- выделение свойств  объекта, выделение объекта из группы или выделение группы объектов по определенному признаку, синтез - соединение различных элементов в единое целое. В психологии анализ и синтез рассматриваются как взаимодополняющие  друг друга процессы (анализ осуществляется через синтез, а синтез - через  анализ).[1, 286] Эти компоненты являются составной частью развития у детей  задатков дедуктивного и индуктивного способов мышления. Примером использования  анализа и синтеза как методических приёмов может служить формирование у детей представлений о понятиях «много» и «один», которые возникают  под влиянием наблюдения и практических действий с предметами.

Так, например, распределив  среди малышей столько одинаковых игрушек, сколько детей, а затем, собрав игрушки вместе, педагог показывает ребятам, что группа предметов, т. е. «много», состоит из отдельных предметов, из отдельных предметов воссоздаётся вся группа.

На основе анализа и  синтеза детей подводят к обобщениям, в которых обычно суммируются  результаты наблюдений и действий. Этот приём направлен на осознание  количественных, пространственных и  временных отношений, выделение  главного и существенного. Обобщение  проводится обычно в конце каждой части занятия, а также и в  конце всего занятия с ведущей  ролью воспитателя.

Сравнение, анализ, синтез, обобщение  осуществляется на наглядной основе с привлечением разнообразных дидактических  средств. Наблюдение, практические действия с предметами, отражение их результатов  в речи, вопросы к детям являются внешним выражением этих методических приёмов, которые тесно между  собой связаны и используются комплексно.

8. В методике обучения  приёмами называют также некоторые  специальные практические или  умственные действия, на основе  которых у детей формируются  элементарные математические представления.  К таким приёмам традиционно  относят: наложение и приложение  предметов; обследование формы  предмета; «взвешивание» предмета  «на руках»; использование фишек-эквивалентов; присчитывание и отсчитывание  по единице и т. д.

Информация о работе Обучение детей счету