Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 10:49, контрольная работа
1. (7+9х/4)+(2х/3)=7х+1 (28+9х)/4 + 2х/3 = 7х+1 84+27х+8х=84х+12 84-12=84х-27х-8х 72=49х Х=72/49
2. (7-6х/2)+10х < (8х+1/2)-12 (14-6х+20х)/2 < (16х+1-24)/2 14+14х < 16х-23 Х ≥ 37/2 Х € [37/2; + ∞)
....
2. sin (900 -t)+ cos (1800 +t)+tg(2700 +t)+сtg(3600 +t) = cos t + (-cost) – ctg t + ctgt = 0
arcsin (√3) /2+ arccos (√ 3) /2 = π/3 + π/6 = 3π/6 = π/2 arc cos (-1/2)- arc sin (-1) = 2π/3 – (-π/2) = 7π/6
sin х-1/2=0 sin x = ½ arcsin x = arcsin ½ x = π/6
6. сos х+(√3)/2=0 cosx=-√3/2 arcos x = arcos (-√3/2) x= 5π/6
1.
(7+9х/4)+(2х/3)=7х+1
(28+9х)/4 + 2х/3 = 7х+1
84+27х+8х=84х+12
84-12=84х-27х-8х
72=49х
Х=72/49
2.
(7-6х/2)+10х < (8х+1/2)-12
(14-6х+20х)/2 < (16х+1-24)/2
14+14х < 16х-23
Х ≥ 37/2
Х € [37/2; + ∞)
3.
6х²+2х-11=0
D = 4 +264 = 268; √D = 2 √67
X1= (-2+2√67)/12 = (-1+√67)/6
X2= (-2-2√67)/12 = (-1-√67)/6
4.
(Х+2/х-1)-(х-2/х+1)=(4х²)/2х-1
4/x = 2x-1
2x2-x-4 = 0
D = 1+32 = 33; √D = √33
X1 = (1+√33)/4
X2 = (1-√33)/4
5.
х²-6х+8>0
х²-6х+8=0
D = 36-32 = 4; √D = 2
X1 = (6+2)/2= 4
X2 = (6-2)/2= 2
(x-4)(x-2)› 0
Х € (-∞; 2) U (4; + ∞)
6.
2х²-4х+7<0
2х²-4х+7 = 0
D = 16-56 < 0
X € R
7.
√(х+2)=3х-4
X+2 = (3x-4)2
X+2=9x2-36x+16
9x2-37x+14=0
D = 1369-504 = 865; √D =√865
X1= (37+√865)/18
X2= (37-√865)/18
8.
√(х²+3х-3)=2х-3
х²+3х-3=(2х-3)2
3x2-15x+12=0
D = 225-144 = 81; √D = 9
X1=(15+9)/6=4
X2=(15-9)/6= 1
9.
250.3*51.4*6250.25= 52*0.351.454*0.25= 50.6+1.4+1=53=125
10.
49(-2/3)*71/2*7(-3/4)= 7(-4/3+1/2-3/4)= 7(-19/12)
11.
216(-1/3)*1/6(-2)=5(-1)*1/25(-
63*(-1/3)*6(-1)*(-2)= 5(-1)*5(1)
6=1
12.
(4/5)x =25/6
2(2/5)x = (5/3)*(2/5)-1
log (2/5)2x= log(2/5)-5/3
2x=-5/3
X = -5/6
13.
(1/6)(4x-7) =6(x-3)
(1/6)(4x-7)= (1/6)(3-x)
4x-7=3-x
5x=10
X=2
14.
2(3x+6)< ¼(x-1)
2(3x+6) ≤ 2(-2x+2)
(3x+6) ≤ (-2x+2)
5x ≤ -4
X ≤ -4/5
X € (- ∞ ; -4/5]
15.
9x-1 < 9(-2x+8)
x-1 ≤ -2x+8
x ≤ 3
x€ (-∞; 3]
16.
log327 =log ½ 4* log 7 3√49
17.
log 1/3 9* log 2 3корень2/8:7² log 7 2
18.
log 4 х= log 4 2+ log 47
log4 x = log414
x=14
19.
log 23 (2х-1)= log 25х
23 (2x-1) = 25x
64x-23=25x
20.
log 2 (х²+7х+5)= log 7 (4х-1)
log 2 (х²+7х+5)= (log2(4x-1)/log27)
(х²+7х+5)= (4x-1)/7
7x2+45x+36=0
D =2025-1008= 1017; √D= 3√ 113
X1= (-45-√113)/14
X2= (-45+√113)/14
преобразовать и упростить:
1. sin 1800 - sin 4950 + cos 9450 = sin 1800 – sin (4500+450)+cos (9000+450)= sin 1800- (sin4500cos450+cos4500sin450) + cos9000cos450-sin9000sin450 =
= 0- (1*√2/2+0*√2/2)+(-1*√2/2-0*√2/
2. sin (900 -t)+ cos (1800 +t)+tg(2700 +t)+сtg(3600 +t) = cos t + (-cost) – ctg t + ctgt = 0
sin x = ½
arcsin x = arcsin ½
x = π/6
cosx=-√3/2
arcos x = arcos (-√3/2)
x= 5π/6
Информация о работе Разложение на множители, возведение в степень