Разложение на множители, возведение в степень

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 10:49, контрольная работа

Краткое описание

1. (7+9х/4)+(2х/3)=7х+1 (28+9х)/4 + 2х/3 = 7х+1 84+27х+8х=84х+12 84-12=84х-27х-8х 72=49х Х=72/49
2. (7-6х/2)+10х < (8х+1/2)-12 (14-6х+20х)/2 < (16х+1-24)/2 14+14х < 16х-23 Х ≥ 37/2 Х € [37/2; + ∞)
....
2. sin (900 -t)+ cos (1800 +t)+tg(2700 +t)+сtg(3600 +t) = cos t + (-cost) – ctg t + ctgt = 0
arcsin (√3) /2+ arccos (√ 3) /2 = π/3 + π/6 = 3π/6 = π/2 arc cos (-1/2)- arc sin (-1) = 2π/3 – (-π/2) = 7π/6
sin х-1/2=0 sin x = ½ arcsin x = arcsin ½ x = π/6
6. сos х+(√3)/2=0 cosx=-√3/2 arcos x = arcos (-√3/2) x= 5π/6

Вложенные файлы: 1 файл

166.doc

— 37.50 Кб (Скачать файл)

1.

(7+9х/4)+(2х/3)=7х+1

(28+9х)/4 + 2х/3 = 7х+1

84+27х+8х=84х+12

84-12=84х-27х-8х

72=49х

Х=72/49

 

2.

(7-6х/2)+10х <   (8х+1/2)-12

(14-6х+20х)/2 < (16х+1-24)/2

14+14х < 16х-23

Х ≥ 37/2

Х € [37/2; + ∞)

 

3.

6х²+2х-11=0

D = 4 +264 = 268; √D = 2 √67

X1= (-2+2√67)/12 = (-1+√67)/6

X2= (-2-2√67)/12 = (-1-√67)/6

 

4.

(Х+2/х-1)-(х-2/х+1)=(4х²)/2х-1

4/x = 2x-1

2x2-x-4 = 0

D = 1+32 = 33; √D = √33

X1 = (1+√33)/4

X2 = (1-√33)/4

 

5.

х²-6х+8>0

х²-6х+8=0

D = 36-32 = 4; √D = 2

X1 = (6+2)/2= 4

X2 = (6-2)/2= 2

(x-4)(x-2)› 0

Х € (-∞; 2) U (4; + ∞)

 

6.

2х²-4х+7<0

2х²-4х+7 = 0

D = 16-56 < 0

X € R

 

7.

√(х+2)=3х-4

X+2 = (3x-4)2

X+2=9x2-36x+16

9x2-37x+14=0

D = 1369-504 = 865; √D =√865

X1= (37+√865)/18

X2= (37-√865)/18

8.

√(х²+3х-3)=2х-3

х²+3х-3=(2х-3)2

3x2-15x+12=0

D = 225-144 = 81; √D = 9

X1=(15+9)/6=4

X2=(15-9)/6= 1

 

9.

250.3*51.4*6250.25= 52*0.351.454*0.25= 50.6+1.4+1=53=125

 

10.

49(-2/3)*71/2*7(-3/4)= 7(-4/3+1/2-3/4)= 7(-19/12)

 

11.

216(-1/3)*1/6(-2)=5(-1)*1/25(-1/2)

63*(-1/3)*6(-1)*(-2)= 5(-1)*5(1)

6=1

 

12.

(4/5)x =25/6

2(2/5)x = (5/3)*(2/5)-1

log (2/5)2x= log(2/5)-5/3

2x=-5/3

X = -5/6

 

13.

(1/6)(4x-7) =6(x-3)

(1/6)(4x-7)= (1/6)(3-x)

4x-7=3-x

5x=10

X=2

 

14.

2(3x+6)< ¼(x-1)

 

2(3x+6) ≤ 2(-2x+2)

(3x+6) ≤ (-2x+2)

5x ≤ -4

X ≤ -4/5

X € (- ∞ ; -4/5]

 

15.

9x-1 < 9(-2x+8)

 

x-1 ≤ -2x+8

x ≤ 3

x€ (-∞; 3]

 

16.

log327 =log ½  4* log 7 3√49

 

17.

log 1/3 9* log 2 3корень2/8:7² log 7 2

 

18.

log 4 х= log 4 2+ log 47

 

log4 x = log414

x=14

 

19.

log 23 (2х-1)= log 25х

23 (2x-1) = 25x

64x-23=25x

 

20.

log 2 (х²+7х+5)= log 7 (4х-1)

 

log 2 (х²+7х+5)= (log2(4x-1)/log27)

 

(х²+7х+5)= (4x-1)/7

7x2+45x+36=0

D =2025-1008= 1017; √D= 3√ 113

X1= (-45-√113)/14

X2= (-45+√113)/14

 

преобразовать и упростить:

1. sin 1800 - sin 4950 + cos 9450 = sin 1800 – sin (4500+450)+cos (9000+450)= sin 1800- (sin4500cos450+cos4500sin450) + cos9000cos450-sin9000sin450 =

= 0- (1*√2/2+0*√2/2)+(-1*√2/2-0*√2/2) = -√2/2-√2/2 = -√2

 

2. sin (900 -t)+ cos (1800 +t)+tg(2700 +t)+сtg(3600 +t) = cos t + (-cost) – ctg t + ctgt = 0

  1. arcsin (√3) /2+ arccos (√ 3) /2 = π/3 + π/6 = 3π/6 = π/2
  2. arc cos (-1/2)- arc sin (-1) = 2π/3 – (-π/2) = 7π/6
  3. sin х-1/2=0

sin x = ½

arcsin x = arcsin ½

x = π/6

  1. сos х+(√3)/2=0

cosx=-√3/2

arcos x = arcos (-√3/2)

x= 5π/6

 

 

 

 

 

 


Информация о работе Разложение на множители, возведение в степень