Решение задач на движение

Автор работы: Пользователь скрыл имя, 04 Декабря 2012 в 18:38, реферат

Краткое описание

Работа над задачей на уроке с помощью описанных карточек-заданий органично вписывается в ход урока, удобна в организации, повышает самостоятельность учащихся, позволяет формировать у них умения решать текстовые математические задачи на доступном уровне сложности, - это совершенствует обучение решению задач учащихся начальных классов.

Вложенные файлы: 1 файл

Решение Задач.docx

— 43.55 Кб (Скачать файл)

Два пешехода вышли  одновременно навстречу друг другу  из двух сел и встретились через 3 часа. Первый пешеход шел со скоростью 4 км/ч, второй – 5км/ч. Найди расстояние между селами.

По схеме, дублированной на доске, вызываемые учащиеся рассказывают содержание задачи. При этом выясняется: откуда начал движение каждый пешеход? С какой скоростью двигался каждый? Почему их место встречи на схеме обозначено ближе к месту выхода одного из пешеходов? Кого из них? Можно спросить при этом: "В каком случае флажок окажется точно на полпути? Что означает деление слева от флажка, справа от флажка? Почему они различны по длине? Что означают числа под стрелками?

Такое подробное рассмотрение учит детей "читать" схему. Затем учитель может спросить у класса: "Как решить задачу?"

Возможно, один из учеников приведет примерно такое рассуждение: "Один пешеход до встречи прошел 4*3=12 (км), а другой – 5*3=15 (км). Расстояние между селами будет 12+15=27 (км).

Если такого ученика не нашлось  и предложения детей неполны  или неверны, то учитель проводит, пользуясь наводящими вопросами, эту работу с классом, постепенно подводя его к составлению по задаче выражения:

4*3 + 5*3 (км)

Найдя значение этого выражения, получим  ответ: расстояние между селами равно 27 км.

В связи с нашей задачей учитель  должен провести специальную работу, на основе которой будет выявлен смысл понятия "скорость сближения".

Для этого по схеме выясняется, что за каждый час пешеходы сближаются на (4+5) км в час. "На сколько километров сблизятся пешеходы за 3ч?" Это дает нам второй путь решения задачи: (4+5)*3.

В дальнейшем при решении подобных задач можно использовать как  запись отдельных действий, так и  составление уравнения или выражения.

На следующих уроках продолжается работа по формированию и совершенствованию навыков решения задач "на встречное движение".

Эти задачи получают некоторое развитие для случая, когда предметы начинают движение из одной точки и в противоположных направлениях (№541, 544 и т.д.). Перед решением таких задач следует проиллюстрировать на схеме и в инсценировке, что "встречное движение" – тоже движение в "противоположных направлениях", что после встречи, если скорости тел не изменились, они будут "удаляться" друг от друга с той же скоростью, с какой "сближались". Поэтому скорость удаления тоже равна сумме скоростей движущихся тел.

При рассмотрении первой из подобных задач не следует сразу опираться на "скорость удаления", а решить ее различными способами аналогично тому, как рассматривалась задача №464.

В результате решения соответствующих  простых задач ученики должны усвоить такие связи: если известны расстояния и время движения, то можно найти скорость действием деления; если известна скорость и время движения, можно узнать расстояние действием умножения; если известны расстояние и скорость, можно найти время движения действием деления.

Далее, опираясь на эти знания, дети будут решать составные задачи, в  том числе задачи на нахождение четвертого пропорционального, на пропорциональное деление, на нахождение неизвестного по двум разностям с величинами S, t, V.

При работе с этими задачами надо чаще использовать иллюстрации в  виде чертежа, так как чертеж помогает правильно использовать, определять и представлять жизненную ситуацию, отраженную в задаче.

Задачи на пропорциональное деление  вводятся по-разному: можно предложить для решения готовую задачу, а  можно сначала составить ее, преобразовать задачу на нахождение четвертого пропорционального, в задачу на пропорциональное деление, и после их решения сравнить как сами задачи, так и их решения.

Прежде чем ввести задачи на встречное  движение очень важно сформировать правильные понятия об одновременном движении двух тел. Важно, чтобы дети уяснили, что если два тела вышли одновременно навстречу друг другу, то до встречи они будут в пути одинаковое время и пройдут все расстояние.

Чтобы дети осознали это, следует включать задачи-вопросы, аналогичные следующим.

    1. Из двух городов одновременно отплыли навстречу друг другу два теплохода и встретились через 3 часа. Сколько времени был в пути каждый теплоход?
    2. Из деревни в город вышел пешеход и в это же время из города навстречу ему выехал велосипедист, который встретил пешехода через 40 минут. Сколько времени был в пути до встречи пешеход?

Теперь можно ознакомить детей  с решением задач на встречное  движение. Целесообразно на одном уроке ввести все 3 вида, получая новые задачи путем преобразования данных в обратные. Такой прием позволяет детям самостоятельно найти решение, поскольку задача нового вида будет получена из задачи, уже решенной детьми.

На последующих уроках проводится работа по закреплению умения решать задачи рассмотренных видов.

Здесь так же, как и при решении  других задач, полезно предлагать различные упражнения творческого характера. В частности, ставится вопрос вида: "Могли ли велосипедисты (теплоходы, пешеходы и т.п.) встретиться на середине пути? При каких условиях? Если велосипедисты после встречи будут продолжать движение, то какой их них придет раньше к месту выхода другого велосипедиста, если будет двигаться с той же скоростью и др.?

Ознакомление с задачами на движение в противоположных направлениях может быть проведено аналогично введению задач на встречное движение. Проведя подготовительную работу, надо, чтобы ученики пронаблюдали движение двух тел (пешеходов, автомашин, катеров и т.д.) при одновременном выходе их одного пункта. Ученики должны заметить, что при таком движении расстояние между движущимися телами увеличивается. При этом надо показать, как выполняется чертеж. При ознакомлении с решением задач этого вида тоже может на одном уроке решать три взаимообратные задачи, после чего выполнить сначала сравнение задач, а затем их решений.

На этапе закрепления умения решать такие задачи ученики выполняют  различные упражнения, как и в  других случаях, в том числе проводят сравнение соответствующих задач на встречное движение в противоположных направлениях, а также сравнение решений этих задач.

Эффективны на этом этапе упражнения на составление различных задач на движение по данным в таблице значениям величин и соответствующим выражениям.

Трудности при решении  задач на движение

Анализ работы психологов позволил выделить уровни умения решать задачи младшими школьниками. Охарактеризуем их.

Низкий уровень. Восприятие задачи осуществляется учеником поверхностно, неполно. При этом ученик вычленяет разрозненные данные, зачастую несущественные элементы задачи. Ученик не может и не пытается предвидеть ход ее решения.

Средний уровень. Восприятие задачи сопровождается ее анализом. Ученик стремится понять задачу, выделить данные и искомое, но способен установить между ними лишь отдельные связи.

Высокий уровень. Ученик выделяет целостную систему взаимосвязей между данными и искомым. Ученик способен самостоятельно увидеть разные способы решения и выделить наиболее рациональный из возможных.

Для того чтобы организовать разноуровневую работу над задачей в одно и то же время, используются индивидуальные карточки-задания, которые учитель должен заготовить заранее в нескольких вариантах. Карточки содержат системы заданий, связанные с анализом и решением одной и той же задачи, но на разных уровнях. В размноженном виде они предлагаются учащимся в виде печатной основы. Ученики выполняют задание письменно в специально отведенном для этого месте. Предлагая ученику вариант оптимального для ученика уровня сложности, учитель осуществляет дифференциацию поисковой деятельности при решении задач.

В задачах намеренно изолируется  план решения от вычислительных действий. Это делается с целью формирования умения осуществлять целостное планирование решения задачи. Преимущество его перед "пошаговым" видно в том, что при этом внимание учащихся концентрируется на поиске обобщенного способа решения задачи вне зависимости от конкретных числовых данных, отвлекаясь от них.

Важным является вопрос об организации  такой работы на уроке. Благодаря тому, что варианты заданий приспособлены к возможностям учащихся, а печатная форма предъявления задания снимает сложности, связанные с оформлением, на уроке может быть организована самостоятельная работа учащихся. Во время этой работы учитель имеет возможность оказать индивидуальную помощь отдельным учащимся.

Но возможны и другие варианты. Например, по мере надобности учитель может руководить работой учащихся одного из уровней, в то время как другие работают самостоятельно.

Может быть организована и групповая  работа учащихся на уроке. При этом дети каждой группы обсуждают и выполняют  задания совместно. Состав таких групп может быть как одноуровневым, так и разноуровневым, в зависимости от целей, которые ставит учитель в этой работе. В конце урока работы учащихся собираются учителем для проверки.

Работа над задачей на уроке  с помощью описанных карточек-заданий  органично вписывается в ход  урока, удобна в организации, повышает самостоятельность учащихся, позволяет формировать у них умения решать текстовые математические задачи на доступном уровне сложности, - это совершенствует обучение решению задач учащихся начальных классов.


Информация о работе Решение задач на движение