Содержание и методы предматематической подготовки дошкольников

Автор работы: Пользователь скрыл имя, 04 Октября 2015 в 10:53, контрольная работа

Краткое описание

Содержание предматематическай подготовки дошкольников в детском саду имеет свои особенности. Они объясняются спецификой математических понятий, историческими и педагогическими традициями в обучении детей дошкольного возраста, требованиями современной школы к уровню общего умственного и математического развития детей.
Математические понятия выражают сложные отношения и формы действительного мира, прежде всего количественные отношения и пространственные формы.

Содержание

Особенности содержания предматематической подготовки дошкольников…………………………………………………………………..…3
Виды деятельности (математические и доматематические)…………..…4
Методы обучения детей элементам математики…………………………...5

Вложенные файлы: 1 файл

matematika_20.doc

— 64.50 Кб (Скачать файл)

 

«Содержание и методы предматематической

 подготовки дошкольников».

 

 

                           ПЛАН.

  1. Особенности содержания предматематической подготовки дошкольников…………………………………………………………………..…3
  2. Виды деятельности (математические и доматематические)…………..…4
  3. Методы обучения детей элементам математики…………………………...5

 

 

  Особенности содержания  предматематической подготовки дошкольников.

 

Содержание предматематическай подготовки дошкольников в детском саду имеет свои особенности. Они объясняются спецификой математических понятий, историческими и педагогическими традициями в обучении детей дошкольного возраста, требованиями современной школы к уровню общего умственного и математического развития детей.

Математические понятия выражают сложные отношения и формы действительного мира, прежде всего количественные отношения и пространственные формы.

Абстрактность объектов математики, с одной стороны, и конкретность, наглядно-действенный и наглядно-образный характер мышления дошкольников, с другой стороны, создают объективные трудности в отборе содержания знаний, методов и способов их представления для первоначального обучения.

Психологические и педагогические исследования, проведенные в последние годы, свидетельствуют о больших потенциальных возможностях и резервах развития детского мышления, которые должны эффективно использоваться в воспитании и обучении детей. В процессе наглядно-действенного и наглядно-образного мышления, как отмечает Н. Н. Поддьяков, ребенок приобретает представления об отдельных предметах и их свойствах, которые объединяются в целостные знания об окружающем мире. Уже в дошкольном возрасте появляется возможность отражения существенных закономерных связей, лежащих в основе той или иной сферы реальности и являющихся одновременно предметам изучения различных наук.

Содержание обучения отражается в разделе «Развитие элементарных математических представлений» «Программы воспитания и обучения в детском саду». В каждой возрастной группе программа развития элементарных математических представлений состоит из одинаковых по названию разделов: «Количества и счет» (во второй младшей группе этот раздел называется просто «Количество», так как детей еще не учат считать), «Величина», «Геометрические фигуры», «Ориентировка в пространстве», «Ориентировка во времени». Все эти разделы тесно связаны между собой и дают возможность научить детей выделять в предметах и явлениях окружающей действительности такие их стороны, свойства, отношения, которые являются предметом изучения математики. Усваиваемые в детском саду знания с полным правом можно назвать предматематикой, а программу - программой предматематической подготовки в школе. Она включает в себя также и требования к уровню развития количественных, пространственных и временных представлений у детей на каждом возрастном этапе, что дает возможность использовать ее для контроля и проверки степени усвоения основных программных задач.

 

    Виды деятельности (математические и доматематические).

 

Наибольшее влияние на математическое развитие детей оказывает овладение специальными видами деятельности. Среди них можно выделить две группы. К первой относятся ведущие по своему характеру математические виды деятельности: счет, измерение, простейшие вычисления, связанные с выполнением арифметических действий. Ко второй - пропедевтические, специально сконструированные в дидактических целях, доматематические виды деятельности: сравнение предметов путем наложения или приложения (А. М. Леушина), уравнивание и комплектование (В. В. Давыдов), сопоставление и уравнивание (Н. И. Непомнящая).

 Виды деятельности, относящиеся ко второй группе, опираются на конкретную, предметно-чувственную основу. Поэтому они доступны младшим дошкольникам. Первая группа, хотя и не отрывается от предметной опоры, является более сложной, так как способы действий здесь требуют опосредованного подхода и оценки количественных, пространственных и временных отношений. Виды деятельности, относящиеся к этой группе, становятся доступными в старшем дошкольном возрасте.

Между этими двумя группами существует тесная преемственная связь: более сложные виды деятельности вырастают на базе простых, как бы надстраиваются над ними.

Среди всех видов деятельности традиционным является счет, связанный с возникновением представлений о числах натурального ряда. Определение места и значения счетной деятельности связано с совершенствованием процесса формирования математических представлений и понятий в детском саду и начальной школе. В последнее время критической оценке подверглось развивающее влияние этого вида деятельности, который длительный период был основным и чуть ли не единственным в предматематической подготовке детей.

Обучение счету в детском саду является необходимым компонентом в подготовке к школе. Однако счет не может быть единственным содержанием обучения в детском саду и полностью обеспечивать математическое развитие ребенка. В настоящее время повышается удельный вес знаний, создающих прочную базу для сознательного усвоения счета, установлены более тесные связи между различными представлениями, формируемыми у детей.

Преждевременное обучение счетной деятельности неизбежно приводит к тому, что представление о числе и счете приобретает формальный характер. Поэтому обучение счету начинается не сразу. Ему предшествует подготовительная работа: многочисленные и разнообразные упражнения с множествами предметов, в которых дети, применяя приемы приложения и наложения, сравнивают совокупности, устанавливают отношения «больше», «меньше», «равно», не пользуясь при этом числом и счетом. Важно показать независимость числа от пространственно-качественных особенностей предметов. В процессе выполнения упражнений, которые постепенно усложняют на протяжении обучения в дошкольном возрасте, неявно используются основные теоретико-множественные понятия: «множество и его элемент», «подмножество», «взаимно однозначное соответствие», «эквивалентность множеств», «операции над множествами» и др.

Лишь после выполнения различных практических действий с множествами ребенок может быть подготовлен к пониманию смысла чисел и счета. Все это происходит в практической деятельности, руководимой взрослыми и имеющей своеобразный учебно - игровой характер.

Со счетной деятельностью тесно связана измерительная, основная цель которой - формирование представлений о величинах. Большая подготовительная работа предшествует простейшим измерениям, которыми дети овладевают в детском саду. Она включает обучение измерению размера, объема, массы. Путем непосредственного сравнения предметов по данным признакам, открывает широкие возможности для формирования целого ряда математических представлений: углубляются и обобщаются представления о числе; более гибким становится навык счета, применяемый в другой ситуации; развиваются представления о части и целом, дошкольники знакомятся с простейшими видами функциональной зависимости и т. д.

В старшем дошкольном возрасте дети начинают овладевать элементами вычислительной деятельности, усвоение которой в основном происходит в школе. Счет составляет основу для овладения простейшими приемами вычисления, в процессе которых ребенок оперирует числами и другими математическими категориями.

Принципы построения программы, которые лежат в основе формирования элементарных математических представлений, предполагает в каждом возрастном этапе повторение на более высоком уровне того, что было освоено на предыдущей ступени, и дальнейшее продвижение вперед. Однако в каждом году обучения выделяется одно главное направление. Во второй младшей группе - формирование представлений о равенстве и неравенстве групп по количеству входящих в них предметов, в средней группе - формирование представлений о числах в пределах 5, в старшей - формирование представлений о числах и отношениях между последовательными числами в пределах 10.

 

            Методы обучения детей элементам  математике.

 

В педагогике метод характеризуется как целенаправленная система действий воспитателя и детей, соответствующих целям обучения, содержанию учебного материала, самой сущности предмета, уровню умственного развития ребенка. В теории и методике математического развития детей термин метод употребляется в широком и узком значениях. В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания: практические, наглядные, словесные, игровые. При выборе способов и приемов работы, учитывается ряд факторов: цель, задачи, содержание формируемых математических представлений на данном этапе, возрастные и индивидуальные особенности детей, наличие необходимых дидактических средств, личное отношение воспитателя к тем или иным методам, конкретные условия и т. д.. Среди многообразных факторов, влияющих на выбор того или иного метода, определяющими являются программные требования.

Основоположником теории начального обучения считают И.Г.Песталоцци. Он предлагал обучать детей счету на основе понимания действий с числами, а не на простом запоминании результатов вычислений и резко критиковал существовавшие тогда догматические методы обучения. Суть разрабатываемой И.Г.Песталоцци методики заключалась в переходе от простых элементов счета к более сложным. Особое значение придавалось наглядным методам, облегчающим усвоение чисел.

Ф.Фребель и М.Монтессори большое внимание уделяли наглядным и практическим методам. Разработанные специальные пособия («Дары» Ф.Фребеля и дидактические наборы М.Монтессори) обеспечивали усвоение достаточно осознанных знаний у детей. В методике Ф.Фребеля в качестве основного метода использовалась игра, в которой ребенок получал достаточную свободу. По мнению Ф.Фребеля и М.Монтессори, свобода ребенка должна быть активной и опираться на самостоятельность. Роль педагога в таком случае сводится к созданию благоприятных условий.

В настоящее время в педагогике имеют место несколько различных классификаций дидактических методов. Одной из первых была классификация, в которой доминировали словесные методы. Я.А.Коменский, наряду со словесными, стал использовать другой метод, основанный на приобретении информации не со слов, а «с земли, с дубов и с буков», т.е. через познание самих предметов. Главным в этой методике была опора на практическую деятельность детей.

В формировании элементарных математических представлений ведущим принято считать практический метод. Сущность его заключается в организации практической деятельности детей, направленной на усвоение определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т. д.), на базе которых возникают элементарные математические представления.

Практический метод в наибольшей мере соответствует как, специфике и особенностям элементарных математических представлений, формируемых у дошкольников, так и возрастным возможностям уровню развития их мышления, в основном наглядно-действенного и наглядно-образного. В мышлении маленького ребенка отражается, прежде всего то, что вначале совершается в практических действиях с конкретными предметами, их изображениями или условными обозначениями.

Характерными особенностями практического метода при формировании элементарных математических представлений являются:

- выполнение разнообразных  практических (материальных и материализованных) действий, служащих основой для умственных действий;

- широкое использование  дидактического материала;

- возникновение представлений как результата практических действий с дидактическим материалом;

- выработка навыков счета, измерения, вычисления и рассуждения в самой элементарной форме;

- широкое использование  элементарных математических представлений в практической деятельности, быту, игре, труде, т. е. в других видах деятельности.

Практический метод предполагает организацию упражнений.

В процессе упражнений ребенок неоднократно повторяет практические и умственные действия. Упражнения могут предлагаться детям в форме заданий, организовываться как действия с демонстрационным материалом или протекать в виде самостоятельной работы с раздаточным дидактическим материалом. Используются как коллективные (выполняются всеми детьми одновременно), так и индивидуальные (осуществляются обычно у доски или у стола воспитателя) формы выполнения упражнений.

Однако излишнее использование практических методов, задержка на уровне практических действий могут отрицательно сказываться на развитии ребенка.

 Н а г л я дн ы е  и  с л о в е с н ы е  м е т о д ы в обучении математике не являются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в математическом развитии детей. К наглядным методам обучения относятся: демонстрация объектов и иллюстраций, наблюдение, показ, рассматривание таблиц, моделей. Например: На верхней полоске наборного полотна помещают 1 зайчика, а на нижней - 2 белочек. (Первую белочку точно под зайчиком.) Воспитатель объясняет, что дети будут учиться не только различать, каких предметов больше, каких меньше, но и говорить,' сколько их, а считать она будет сама. «Сколько зайчиков? А сколько белочек?» Считает белочек: «Одна, две - всего две белочки». Интонацией педагог выделяет итог счета и обводит белочек рукой. «Посмотрите, кого больше: зайчиков или белочек? А сколько белочек? Кого меньше? Сколько зайчиков?» Дети. показывают лишнюю белочку.

Воспитатель обобщает ответы детей. Белочек 2 - их больше, а зайчик 1; зайчиков меньше, чем белочек. «Какое число больше: 2 или 1?, какое меньше: 1 иди 2?»

Затем добавляет зайчика. Выясняет, сколько их стало. Педагог считает зайчиков, после чего спрашивает: «Поровну ли стало белочек и зайчиков? Поскольку же белочек и зайчиков?» Он проверяет, правильно ли ответили дети, еще раз пересчитывает обе группы. Дети называют число белочек и зайчиков.

Педагог убирает 1 белочку, выясняет, сколько их осталось, «А сколько зайчиков? Кого больше (меньше)? Какое число больше (меньше): 1 или 2?» Аналогичным образом воспитатель может сравнить количество зайчиков и морковок: «Хватит ли зайчикам морковок? Сколько их?» И т. д.

Информация о работе Содержание и методы предматематической подготовки дошкольников