Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 18:39, контрольная работа
Бросаются две игральные кости. Определить вероятность того, что:
а) сумма числа очков не превосходит N;
б) произведение числа очков не превосходит N;
в) произведение числа очков делится на N.
Задача 1
Бросаются две игральные кости. Определить вероятность того, что:
а) сумма числа очков не превосходит N;
б) произведение числа очков не превосходит N;
в) произведение числа очков делится на N.
Исходные данные: N=18.
Решение задачи:
Вероятностью случайного события А называется отношение числа равновозможных элементарных событий, благоприятствующих этому событию, к числу всех равновозможных элементарных событий пространства Е, определяемого данным испытанием.
Р(А) = |
m |
n |
где: n – число всех равновозможных элементарных событий, вытекающих из условий данного испытания;
m - число
равновозможных событий,
а) при сумме числа очков (N = 18), не превосходящих N:
n = 36;m = 36
Р(А) = |
36 |
= |
1 ; |
||
36 |
б) при произведении числа очков, не превосходящих N:
n = 28;m = 36
Р(А) = |
28 |
= |
7 |
» 0,778 ; |
||
36 |
9 |
в) при произведении числа очков, делящихся на N:
n = 3;m = 36
Р(А) = |
3 |
= |
1 |
» 0,083 . | |
36 |
12 |
Ответы:
а) Р(А) = 1 ;
б) Р(А) = 7/9 » 0,778 ;
в) Р(А) = 1/12 » 0,083.
Задача 2
Имеются изделия четырех сортов, причем число изделий i-го сорта равно =1, 2, 3, 4. Для контроля наудачу берутся т изделий. Определить вероятность того, что среди них т1 первосортных, т2, т3 и т4 второго, третьего и четвертого сорта соответственно .
Исходные данные: n1 = 3; n2 = 1; n3 = 6; n4 = 2;m1 = 2; m2 = 1; m3 = 3; m4 = 1.
Решение задачи.
Определяем количество способов нужной комбинации:
Сў = Сn1 m1 x Сn2 m2 x Сn3 m3 x Сn4 m4 = С3 2 x С1 1 x С6 3 x С2 1 ;
Определяем количество всех возможных способов:
Сўў = Сn1+n2+n3+n4 m1+m2+m3+m4 = С12 7 ;
3) Определяем вероятность Р согласно условия задачи:
Р = |
С3 2 x С1 1 x С6 3 x С2 1 |
= |
3 х 1 х |
4 х 5 х 6 |
х 2 |
= |
2 х 3 |
||||||
С12 7 |
8 х 9 х 10 х 11 х 12 |
|||||
2 х 3 х 4 х 5 |
= |
3 х 5 |
= |
5 |
» 0,15 |
||
9 х 11 |
33 |
Ответ: Р = 5/33 » 0,15 .
Задача 3
Среди п лотерейных билетов k выигрышных. Наудачу взяли т билетов. Определить вероятность того, что среди них выигрышных.
Исходные данные: n = 8; l = 3; m = 5; k = 4.
Решение задачи.
|
|||||||||||||||
|
|||||||||||||||
|
|||||||||||||||
Общее число случаев, очевидно, равно Сn m , число благоприятных случаев Сk l x Сn-k m-l , откуда:
Р(А) = |
Сk l x Сn-k m-l |
= |
С4 3 x С8-4 5-3 |
= |
3 |
» 0, 4286 . |
Сn m |
С8 5 |
7 |
Ответ: Р(А) = 3/7 » 0, 4286 .
Задача 4
В двух партиях k1 и k2 % доброкачественных изделий соответственно. Наудачу выбирают по одному изделию из каждой партии. Какова вероятность обнаружить среди них:
а) хотя бы одно бракованное;
б) два бракованных;
в) одно доброкачественное и одно бракованное?
Исходные данные: k1 = 81; k2 = 37.
Решение задачи
События А и В называются независимыми, если выполняется соотношение:
Р(А/В) = Р(А) / Р(В) .
Для любых событий А и В имеет место формула:
Р(А+В) = Р(А) + Р(В) – Р(АВ) .
Обозначения:
Событие
А – выбрали бракованное
Событие B – выбрали бракованное изделие из 2-й партии (1 – k2) .
События А и В – независимые.
а) Р(А+В) = Р(А) + Р(В) – Р(АВ) = (1 – k1) + (1 – k2) – (1 – k1)(1 – k2) =
= 0,19 + 0,63 – 0,19 х 0,63 » 0,82 – 0,12 » 0,70 .
б) Вероятность пересечения двух независимых событий равна произведению вероятностей этих событий:
Р(АЗВ) = Р(А) х Р(В) = (1 – k1)(1 – k2) = 0,19 х 0,63 » 0,12 .
в) Р = Р(А) х Р(В) + Р(В) х Р(А) = (1 – k1)k2 + (1 – k2)k1 =
= 0,19 х 0,37 + 0,63 x 0,81 » 0,07 + 0,51 » 0,58 .
Ответы:
а) » 0,70;
б)» 0,12;
в)» 0,58.
Задача 5
Вероятность того, что цель поражена при одном выстреле первым стрелком р1 вторым — р2 . Первый сделал n1, второй — n2 выстрелов. Определить вероятность того, что цель не поражена.
Исходные данные: p1 = 0,33; p2 = 0,52; n1 = 3; n2 = 2.
Решение задачи.
Обозначения:
А – вероятность непоражения цели при одном выстреле первым стрелком (1 – р1) ;
В – вероятность непоражения цели при одном выстреле вторым стрелком (1 – р2) ;
Р – цель не поражена в результате общего количества испытаний.
Р = (1 – р1)n1 x (1 – р2)n2 = (1 – 0,33)3 x (1 – 0,52)2 = 0,673 x 0,482 » 0,30 x 0,23 » 0,069 » 0,07 .
Ответ:» 0,07 .
Задача 6
Из 1000 ламп ni принадлежат i-й партии, i=1, 2, 3, . В первой партии 6%, во второй 5%, в третьей 4% бракованных ламп. Наудачу выбирается одна лампа. Определить вероятность того, что выбранная лампа — бракованная.
Исходные данные: n1 = 350; n2 = 440.
Решение задачи
Рассмотрим три гипотезы:
Н1 – выбор лампы из первой партии;
Н2 – выбор лампы из второй партии;
Н3 – выбор лампы из третьей партии;
а также событие А – выбор бракованной лампы.
Учитывая то, что Н1, Н2, Н3 – полная группа попарно несовместимых событий, причем Р(Нi) № 0, i = 1,2,3, то для любого события А имеет место равенство (формула полной вероятности):
3 | ||
Р(А) = |
е P(Hi) x P(A/Hi) . | |
i=1 |
Тогда:
P(H1) = 350/1000 = 7/20 ;
P(H2) = 440/1000 = 11/25 ;
P(H3) = 210/1000 = 21/100 .
Р(А) = 7/20 х 0,06 + 11/25 х 0,05 + 21/100 х 0,04 = 42/2000 + 55/2500 + 84/10000 = 514/10000 = 0,0514 .
Ответ: Р(А) = 0,0514 .