Различные способы учета погрешности исходных данных в статистических процедурах

Автор работы: Пользователь скрыл имя, 10 Июня 2014 в 19:38, реферат

Краткое описание

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются измерения таких величин, как длина, объем, вес, время и др.
Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности. Все отрасли техники не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, так и свойства и качество выпускаемой продукций.

Содержание

Введение……………………………………………………………………3
1. Разновидности погрешностей…………………………………………6
2. Систематические, прогрессирующие и случайные погрешности…..9
3. Место статистики интервальных данных (СИД) среди методов
описания неопределенностей……………………………………………..12
Заключение…………………………………………………………………16
Список использованной литературы…………………………………….18

Вложенные файлы: 1 файл

реферат.doc

— 85.50 Кб (Скачать файл)

Тем не менее, так как большинство составляющих погрешностей средств и результатов измерений являются случайными погрешностями, то единственно возможным разработанным способом их описания является использование положений теории вероятностей и ее дальнейшего развития применительно к процессам передачи информации б виде теории информации, а для обработки получаемых экспериментальных данных, содержащих случайные погрешности, — методов математической статистики. Поэтому именно эта группа фундаментальных разделов математики является основой для развития современной теории оценок погрешностей средств, процессов и результатов измерений.

Примерами систематических аддитивных погрешностей являются погрешности от постороннего груза на чашке весов, от неточной установки прибора на нуль перед измерением, от термо-ЭДС в цепях постоянного тока и т. п. Для устранения таких погрешностей во многих СИ предусмотрено механическое или электрическое устройство для установки нуля (корректор нуля).

Примерами случайных аддитивных погрешностей являются погрешность от наводки переменной ЭДС на вход прибора, погрешности от тепловых шумов, от трения в опорах подвижной части измерительного механизма, от ненадежного контакта при измерении сопротивления, погрешность от воздействия порога строгания приборов с ручным или автоматическим уравновешиванием и т. п.

Причинами возникновения мультипликативных погрешностей могут быть:

  • изменение коэффициента усиления усилителя;
  • измерение жесткости мембраны датчика манометра или пружинки прибора;
  • изменение опорного напряжения в цифровом вольтметре и т.д.

 

3. Место статистики интервальных данных (СИД) среди методов описания неопределенностей

 

 

 Кратко рассмотрим положение статистики интервальных данных среди других методов описания неопределенностей.  

Нечеткость и СИД. С формальной точки зрения описание нечеткости интервалом – это частный случай описания ее нечетким множеством. В СИД функция принадлежности нечеткого множества имеет специфический вид – она равна 1 в некотором интервале и 0 вне его. Такая функция принадлежности описывается всего двумя параметрами (границами интервала). Эта простота описания делает математический аппарат СИД гораздо более прозрачным, чем аппарат теории нечеткости в общем случае. Это, в свою очередь, позволяет продвинуться дальше, чем при использовании функций принадлежности произвольного вида. 

Интервальная математика и СИД. Можно было бы сказать, что СИД – часть интервальной математики, что СИД так соотносится с прикладной математической статистикой, как интервальная математика – с математикой в целом. Однако исторически сложилось так, что интервальная математика занимается прежде всего вычислительным погрешностями. С точки зрения интервальной математики две формулы для выборочной дисперсии, рассмотренные выше, имеют разные погрешности. А с точки зрения СИД эти две формулы задают одну и ту же функцию, и поэтому им соответствуют совпадающие нотны и рациональные объемы выборок. Интервальная математика прослеживает процесс вычислений, СИД этим не занимается. Необходимо отметить, что типовые постановки СИД могут быть перенесены в другие области математики, и, наоборот, вычислительные алгоритмы прикладной математической статистики и СИД заслуживают изучения. Однако и то, и другое – скорее дело будущего. Из уже сделанного отметим применение методов СИД при анализе такой характеристики финансовых потоков, какNPV – чистая текущая стоимость .

Математическая статистика и СИД. Как уже отмечалось, математическая статистика и СИД отличаются тем, в каком порядке делаются предельные переходы.  При этом СИД переходит в математическую статистику при . Правда, тогда исчезают основные особенности СИД: нотна становится равной 0, а рациональный объем выборки – бесконечности. Рассмотренные выше методы СИД разработаны в предположении, что погрешности малы (но не исчезают) и объем выборки велик. СИД расширяет классическую математическую статистику тем, что в исходных статистических данных каждое число заменяет интервалом. С другой стороны, можно считать СИД новым этапом развития математической статистики.

Статистика объектов нечисловой природы и СИД. Статистика объектов нечисловой природы (СОНП) расширяет область применения классической математической статистики путем включения в нее новых видов статистических данных . Естественно, при этом появляются новые виды алгоритмов анализа статистических данных и новый математический аппарат (в частности, происходит переход от методов суммирования к методам оптимизации). С точки зрения СОНП частному виду новых статистических данных – интервальным данным – соответствует СИД. Напомним, что одно из двух основных понятий СИД – нотна – определяется как решение оптимизационной задачи. Однако СИД, изучая классические методы прикладной статистики применительно к интервальным данным, по математическому аппарату ближе к классике, чем другие части СОНП, например, статистика бинарных отношений.

Робастные методы статистики и СИД. Если понимать робастность согласно как теорию устойчивости статистических методов по отношению к допустимым отклонениям исходных данных и предпосылок модели, то в СИД рассматривается одна из естественных постановок робастности. Однако в массовом сознании специалистов термин «робастность» закрепился за моделью засорения выборки большими выбросами (модель Тьюки-Хубера), хотя эта модель не имеет большого практического значения. К этой модели СИД не имеет отношения.

Теория устойчивости и СИД. Общей схеме устойчивости математических моделей социально-экономических явлений и процессов по отношению к допустимым отклонениям исходных данных и предпосылок моделей СИД полностью соответствует. Он посвящен математико-статистическим моделям, используемым при анализе статистических данных, а допустимые отклонения – это интервалы, заданные ограничениями на погрешности. СИД можно рассматривать как пример теории, в которой учет устойчивости позволил сделать нетривиальные выводы. Отметим, что с точки зрения общей схемы устойчивости устойчивость по Ляпунову в теории дифференциальных уравнений – весьма частный случай, в котором из-за его конкретности удалось весьма далеко продвинуться.

Минимаксные методы, типовые отклонения и СИД. Постановки СИД относятся к минимаксным. За основу берется максимально возможное отклонение. Это – подход пессимиста, используемый, например, в теории антагонистических игр. Использование минимаксного подхода позволяет подозревать СИД в завышении роли погрешностей измерения. Однако примеры изучения вероятностно-статистических моделей погрешностей, проведенные, в частности, при разработке методов оценивания параметров гамма-распределения , показали, что это подозрение не подтверждается. Влияние погрешностей измерений по порядку такое же, только вместо максимально возможного отклонения (нотны) приходится рассматривать математическое ожидание соответствующего отклонения (см. выше). Подчеркнем, что применение в СИД вероятностно-статистических моделей погрешностей не менее перспективно, чем минимаксных.

Подход научной школы А.П. Вощинина и СИД. Если в математической статистике неопределенность только статистическая, то в научной школе А.П. Вощинина - только интервальная. Можно сказать, что СИД лежит между классической прикладной математической статистикой и областью исследований научной школы А.П. Вощинина. Другое отличие состоит в том, что в этой школе разрабатывают новые методы анализа интервальных данных, а в СИД в настоящее время изучается устойчивость классических статистических методов по отношению к малым погрешностям. Подход СИД оправдывается распространенностью этих методов, однако в дальнейшем следует переходить к разработке новых методов, специально предназначенных для анализа интервальных данных.

Анализ чувствительности и СИД. При анализе чувствительности, как и в СИД, рассчитывают производные по используемым переменным, или непосредственно находят изменения при отклонении переменной на +10% от базового значения. Однако этот анализ делают по каждой переменной отдельно. В СИД все переменные рассматриваются совместно, и находится максимально возможное отклонение (нотна). При малых погрешностях удается на основе главного члена разложения функции в многомерный ряд Тейлора получить удобную формулу для нотны. Можно сказать, что СИД – это многомерный анализ чувствительности.

 

Заключение

 

Очень широко среди практиков распространено мнение, что все затруднения с вероятностной оценкой погрешности объясняются лишь их слабой подготовкой в области математической статистики и теории вероятностей. Бее необходимые для этого задачи, дескать, давно решены в теории вероятностей и теории случайных процессов. Стоит лишь как следует овладеть премудростью этих наук и все сложности разрешатся сами собой. Но это верно лишь отчасти. Очень многое применительно к нуждам оценки погрешностей еще ждет своей разработки.

Так, например, нельзя же ожидать, что для всего разнообразия законов распределения погрешностей математики дадут таблицы квантилей. Такие таблицы заняли бы целый том. Нужно какое-то другое решение, например, в виде приближенных формул, а такие формулы нужно разработать. Подобное положение наблюдается и с методикой суммирования погрешностей. Строгое математическое решение в пике многомерного распределения для практики бесполезно. То же самое относится и к имитационному моделированию но методу Монте-Карло, так как оно не может дать общего решения, а численные решения всякий раз должны проводиться заново. Нужны упрощенные, практические методы. Это особенно относится к расчету погрешности косвенных измерений где из-за математической сложности необходимо ограничиться самыми примитивными методами.

Не лучше положение и со сравнительной эффективностью различных оценок центра, рассеянием оценок контрэксцесса, энтропийного коэффициента и энтропийного значения, исключением промахов при распределениях, отличных от нормального. Даже такой, казалось бы, классический спрос математической статистики, как оптимальное число интервалов группирования экспериментальных данных для построения полигона или гистограммы, оказывается, имеет почти столько же «оптимальных» решений, сколько излагающих его авторов. Всюду рекомендуемое использование критериев согласия для идентификации формы распределения практически не позволяет произвести желаемой идентификации при тех данных, которыми исследователь фактически располагает.

Подобный перечень как теоретических, так и практических задач можно было бы дать по обработке однофакторных и многофакторных экспериментов. Здесь также большое количество нужных для практики задач в области разработки удобных методов описания параметров многомерного мениска погрешностей при многофакторном эксперименте и в использовании так называемых «робастных», т. е. не зависящих от вида закона распределения, устойчивых методов оценки параметров модели и исключения промахов, которые позволяют устранить неустойчивость при получении решений МНК для многомерных задач.

Тем не менее дальнейшая разработка устойчивых, не зависимых от вида распределения методов, представляет собой одно яз наиболее перспективных направлений развития методов обработки данных. На основе существующих методов уже сейчас могут быть созданы удобные программы для обработки данных исследования на ЭВМ.

Особого внимания заслуживает анализ путей повышения эффективности измерительного эксперимента. Это прежде всего разработка шкалы затрат на подготовку, постановку и проведение эксперимента и шкалы достигаемого эффекта с учетом как параметров мениска погрешностей, так и протяженности варьирования факторов. Естественно, что оценка результата сложного многофакторного эксперимента одним числом крайне примитивна. Здесь нужен системный, комплексный подход, своеобразная квалиметрия процесса измерения, в какой-то степени аналогичная квалиметрии СИ.

Одним словом, нерешенных вопросов в области оценки погрешностей результатов измерений вполне достаточно. Эти трудные и неблагодарные задачи еще ожидают энтузиастов дня их разрешения.

 

Список использованной литературы

 

  1. В.Д. Цюцюра, С.В. Цюцюра. Метрологія та основи вимірювань. Навч. посібн., К., "Знання -Прес", 2003.
  1. Новицкий П.В. Оценка погрешностей результатов измерений. 1991.

  1. Олейник Б.М. и др. Приборы и методы измерений, 1987.

  1. Е.С. Левшина, П.В. Новицкий. Измерения физических величин. 1983.

 


Информация о работе Различные способы учета погрешности исходных данных в статистических процедурах