Физико-химические основы строения полимеров

Автор работы: Пользователь скрыл имя, 21 Октября 2015 в 10:45, реферат

Краткое описание

Пластмассы - материалы на основе органических природных, синтетических или органических полимеров, из которых можно после нагрева и приложения давления формовать изделия сложной конфигурации. Полимеры - это высоко молекулярные соединения, состоящие из длинных молекул с большим количеством одинаковых группировок атомов, соединенных химическими связями. Кроме полимера в пластмассе могут быть некоторые добавки.

Содержание

Введение
2. Физико-химические основы строения полимеров
2.1. Строение полимеров
2.2. Свойства полимеров
2.3. Пластические массы
2.3.1. Классификация пластмасс
2.3.2.Технологические свойства
2.3.3. Физико-химические основы переработки
2.3.4. Марочный ассортимент
3. Выбор пластмасс
3.1. Признаки выбора
3.2.Порядок выбора и алгоритм выбора
4. Способы изготовления деталей из пластмасс
4.1.Классификация способов
4.2. Способы горячего формования
4.2.1. Подготовка полимеров к переработке
4.2.2. Особенности формования аморфных полимеров
4.2.3. Особенности формования кристаллизующихся полимеров
4.2.4. Температурно-временная область переработки
4.2.5. Технологическая характеристика способов
горячего формования
4.3. Способы механической обработки
4.3.1. Особенности обработки
4.3.2. Технологическая характеристика способов обработки
5. Выбор способа изготовления детали
6. Технологичность конструкции детали

Вложенные файлы: 1 файл

КОЗАКОВА.docx

— 97.58 Кб (Скачать файл)

Более крупную структуру полимера можно получить при увеличении температуры, времени выдержки и медленном охлаждении или путем предварительного нагрева расплава до более высокой температуры перед кристаллизацией.

Форма кристаллов может быть изменена. Так, используя центры кристаллизации и искусственные зародыши (1...2% от массы), можно регулировать форму кристаллов. При использовании подложки-кристаллизатора у ее поверхности возникает большое количество центров кристаллизации и образуется плотно упакованный слой из перпендикулярно расположенных к поверхности кристаллов. Искусственные зародыши являются дополнительными центрами кристаллизации, форма кристалла при этом зависит от формы зародыша кристаллизации, на мелких кристаллах растут сферолитные структуры, на длинных игольчатых кристаллах - лентообразные структуры. Структурообразователями (зародышами) в этом случае являются окислы алюминия и ванадия, кварц, двуокись титана и др. Структурообразователи обычно способствуют измельчению сферолитной структуры полимера.

Нестационарные условия теплопередачи и скорости охлаждения при формовании изделий из полимеров способствуют получению изделий с неоднородной структурой (более мелкие кристаллы у поверхностных слоев).

В случае необходимости однородные свойства изделия можно обеспечить с помощью отжига или последующей термообработки при температуре ниже температуры плавления. При отжиге уменьшается объем изделия и повышается плотность; причем чем выше температура и больше время выдержки, тем выше плотность изделия. Термообработка целесообразна в тех случаях, когда необходимы повышенные твердость, модуль упругости, механическая прочность, теплостойкость и стойкость к циклическим нагрузкам; при этом уменьшаются относительное удлинение и ударная вязкость.

Полнота протекания указанных процессов, кроме деструкции в значительной мере определяет качество готового изделия, а скорость протекания этих процессов определяет производительность способа переработки. На качество изделия в значительной степени влияет скорость протекания деструкции полимера, повышаемая термическим и механическим воздействием на материал со стороны рабочих органов инструментов при формировании.

Форму изделия из термопласта получают в результате развития в полимере пластической или высокоэластичной деформации под действием давления при нагреве полимера. При переработке реактопластов формирование изделия обеспечивают путем сочетания физических процессов формирования с химическими реакциями отверждения полимеров. При этом свойства изделий определяют скорость и полнота отверждения. Неполное использование при отверждении реакционных способностей полимера обусловливает нестабильность свойств изделия из реактопластов во времени и протекание деструкционных процессов в готовых изделиях. Низкая вязкость реактопластов при формировании приводит к снижению неравномерности свойств, увеличению скорости релаксации напряжений и меньшему влиянию деструкции при переработке на качество готовых изделий из реактопластов.

В зависимости от способа переработки отверждение совмещается с формованием изделия (при прессовании), происходит после оформления изделия в полости формы (литьевое прессование и литье под давлением реактопластов) или при термической обработке сформованной заготовки (при формовании крупногабаритных изделий, например, листов гетинакса, стеклотекстолита и др.). Полное отверждение реактопластов требует в некоторых случаях нескольких часов. Для увеличения съема продукции с оборудования окончательное отверждение может производиться вне формующей оснастки, так как устойчивость формы приобретается задолго до завершения этого процесса. По этой же причине изделие извлекают из формы без охлаждения.

При переработке полимеров (особенно термопластов) происходит ориентация макромолекул в направлении течения материала. Наряду с различием в ориентации на разных участках неоднородных по сечению и длине изделий возникает структурная неоднородность и развиваются внутренние напряжения.

Наличие температурных перепадов по сечению и длине детали ведет к еще большей структурной неоднородности и появлению дополнительных напряжений, связанных с различием скоростей охлаждения, кристаллизации, релаксации, и различной степенью отверждения.

Неоднородность свойств материала (по указанным причинам) не всегда допустима и часто приводит к браку (по нестабильности физических свойств, размеров, короблению, растрескиванию). Снижение неоднородности молекулярной структуры и внутренних напряжений удается достигнуть термической обработкой готового изделия. Однако более эффективно использование методов направленного регулирования структур в процессах переработки. Для этих целей в полимер вводят добавки, оказывающие влияние на процессы образования надмолекулярных структур и способствующие получению материалов с желаемой структурой.

2.3.4. Марочный ассортимент  полимеров

Марочный ассортимент полимеров создан с целью быстрого выбора вида и марки полимера для изготовления высококачественных изделий. Марочный ассортимент включает марки, различающиеся по вязкости и эксплуатационным свойствам.

Марочный ассортимент по вязкости разделяют на марки, предназначенные для переработки различными методами (литьем под давлением, прессованием и др.), с повышением номера марки увеличивается молекулярная масса и, как следствие, увеличивается вязкость. Это марки базового ассортимента . Марки по вязкости модифицируют для улучшения технологических свойств:

а) для увеличения производительности создают быстрокристаллизирующиеся марки;

б) для изделий сложной конфигурации - марки со смазками;

в) термостабилизированные марки.

На основе базового ассортимента марок по технологическим свойствам создают путем химической или физической модификации марки с улучшенными свойствами . Эти марки разрабатывают с такими свойствами, чтобы при рекомендуемых режимах получать качественные изделия по всем параметрам ( точности, прочности, внешнему виду и др.). В настоящее время полимерные материалы выпускают в ассортименте и поэтому для каждого изделия и способа формования можно подобрать соответствующую базовую марку полимера и, если необходимо, марку с улучшенными технологическими свойствами.

Базовые марки с целью изготовления качественных изделий разделяют на группы:

1) в зависимости от  вязкости полимера и толщины S стенки изделия;

2) в зависимости от  относительной длины изделия L/S (S-длина).

Все множество марок пластмасс содержит около 10000 наименований.

3. Выбор пластмасс

3.1. Признаки выбора. Основными  признаками выбора пластмасс  являются эксплуатационные и  технологические свойства. Для ускорения  процесса выбора материала используют  специальные таблицы, в каждой  из которых приведены марки  материалов в порядке снижения  среднего значения представляемого  эксплуатационного свойства. Так  созданы таблицы групп материалов  по коэффициенту трения и износа, электрической прочности и электросопротивлению, диэлектрической проницаемости, коэффициенту  светопропускания и преломления  и другим признакам.

3.2. Порядок и алгоритм  выбора пластмасс

Пластмассы выбирают исходя из требований к эксплуатационным свойствам и геометрическим параметрам изделия. Поэтому сначала выбирают вид пластмассы на основе требований к ее эксплуатационным свойствам, а затем базовую марку и марку с улучшенными технологическими свойствами , которую можно эффективно переработать выбранным способом.

Существует два метода выбора вида пластмасс:

1 - метод аналогий - качественный;

2 - количественный метод.

Метод аналогий применяют при невозможности точного задания параметров эксплуатационных свойств пластмассы; в этом случае используют для выбора характерные параметры эксплуатационных свойств, назначение, достоинства, ограничения, рекомендации по применению и способам переработки; в этом случае для выбора также могут быть использованы рекомендации по применению пластмасс в других типах изделий, работающих в аналогичных условиях.

Порядок выбора пластмасс количественным методом по комплексу заданных значений эксплуатационных свойств сводится к следующему:

- выявление условий эксплуатации  изделия и соответствующих им  значений параметров эксплуатационных  свойств пластмасс при основных условиях работы изделияя;

- подбор пластмассы с  требуемыми параметрами эксплуатационных  свойств;

- проверка выбранной пластмассы  по другим параметрам, не вошедшим  в основные.

Наиболее удобной является эвристическая стратегия поиска и выбора пластмасс. В этом случае, отбрасывая заведомо бессмысленные варианты, используют не все множество вариантов, а лишь его наиболее нужную часть. Все множество пластмасс для этого разбивают на подмножества по определенным эксплуатационным свойствам.

В таблице 2 приведены некоторые подмножества полимерных материалов.

 

 

 

 

2. Характеристики подмножества  полимерных материалов

Подмножество полимерных материалов

Число элементов

Ki

Энтропия ряда

(Log2 Ki бит)

Число поисковых параметров ряда, h

Сокращение поля поиска, Кобщ/Ki раз

Цена параметра, или снижение энтропии (Log2 Kобщ/ Ki, бит)

Все множество(Kобщ)

2710

11.4

11-12

-

-

Конструкционные

949

9.89

10

2.86

1.51

Электро- и радио- технические

864

9.76

10

3.14

1.65

Листовые

501

8.97

9

5.41

2.44

Тропикостойкие

188

7.56

8

14.41

3.85

Прозрачные

156

7.23

7-8

18.07

4.18

Медицинские

123

6.94

7

22.03

4.46

Радиационностойкие

56

5.81

6

48.39

5.60

Герметики

53

5.81

6

48.39

5.60

Компаунды

52

5.73

6

51.13

5.68

Фрикционные

13

3.70

4

208.46

7.70


 

Поиск в конструкционном ряду сокращает поисковое поле почти в 3 раза, в ряду прозрачных материалов - в 18 раз, фрикционных материалов - в 208 раз (табл.2).

Выбор пластмасс по эксплуатационным параметрам это задача противоречивая:

1 - необходимость учесть  наибольшее число параметров  с целью повышения точности  выбора;

2 - необходимость уменьшить  их число с целью сокращения  затрат труда и времени на  оценку.

Выбор оптимального или минимального числа параметров из всего возможного их числа (30-40 парамеитров) при выборе и оценке выбранного материала основан на учете всех наиболее ценных эксплуатационных параметров материала путем использования для этой цели нужного (по эксплуатационным параметрам) подмножества пластмасс (электро- и радиотехнические, прозрачные, тропикостойкие - табл.2 и др.), остальные материалы отбрасывают. Минимальное количество учитываемых параметров определяют по выражению:

n ³ INT(Log2 K) +1;

где K - число элементов в данном подмножестве.

Обычно число поисковых параметров, необходимое для выбора пластмассы с помощью рядов пластмасс не превышает 10. Это наиболее ценные параметры с наибольшей информационной емкостью. За критерий ценности поисковой информации принимают выигрыш, показывающий степень сужения поискового поля; это выражает формула:

Log2 Kобщ/Ki = Log2 Kобщ - Log2 Ki ;

где Kобщ - число элементов всего множества, Кi - число элементов в подмножестве. Иначе эту величину называют цена параметра (в битах).

Определение перечня параметров является наиболее важным этапом при выборе пластмасс. Для этого удобно представить процесс в виде граф-дерева (рис.8) с его свойствами, расположенными на различных уровнях. Пусть на нулевом уровне находится интегральное свойство , характеризующее объект в целом. Далее дерево постепенно разветвляется, образуя первый, второй, третий и т.д. уровни. Число таких уровней не ограничено. Однако строя такое разветвление желательно доходить до такого уровня рассмотрения, на котором находятся простые, не разлагаемые на другие, наименее общие свойства. Такое построение логической структуры свойств пластмассы ускоряет выбор перечня свойств.

В перечне параметров для каждого параметра необходимо указать его абсолютное значение или интервал возможного его изменения. Эти данные являются оценочными для выбора пластмассы из ряда.При этом часто используют наиболее часто метод расстановки приоритета. Сравнивая между собой параметры эксперт определяет отношение между ними (больше, меньше, равно) с присвоением коэффициентов, составляет матрицу и определяет параметры. После выполнения таких действий находят пластмассу, совпадающую по свойствам с установленными теоретическим путем параметрами. Поиск выполняют по соответствующей таблице с главным определяющим признаком (прозрачности, диэлектрической постоянной, электрической прочности и др.).

Информация о работе Физико-химические основы строения полимеров