Физико-химические основы строения полимеров

Автор работы: Пользователь скрыл имя, 21 Октября 2015 в 10:45, реферат

Краткое описание

Пластмассы - материалы на основе органических природных, синтетических или органических полимеров, из которых можно после нагрева и приложения давления формовать изделия сложной конфигурации. Полимеры - это высоко молекулярные соединения, состоящие из длинных молекул с большим количеством одинаковых группировок атомов, соединенных химическими связями. Кроме полимера в пластмассе могут быть некоторые добавки.

Содержание

Введение
2. Физико-химические основы строения полимеров
2.1. Строение полимеров
2.2. Свойства полимеров
2.3. Пластические массы
2.3.1. Классификация пластмасс
2.3.2.Технологические свойства
2.3.3. Физико-химические основы переработки
2.3.4. Марочный ассортимент
3. Выбор пластмасс
3.1. Признаки выбора
3.2.Порядок выбора и алгоритм выбора
4. Способы изготовления деталей из пластмасс
4.1.Классификация способов
4.2. Способы горячего формования
4.2.1. Подготовка полимеров к переработке
4.2.2. Особенности формования аморфных полимеров
4.2.3. Особенности формования кристаллизующихся полимеров
4.2.4. Температурно-временная область переработки
4.2.5. Технологическая характеристика способов
горячего формования
4.3. Способы механической обработки
4.3.1. Особенности обработки
4.3.2. Технологическая характеристика способов обработки
5. Выбор способа изготовления детали
6. Технологичность конструкции детали

Вложенные файлы: 1 файл

КОЗАКОВА.docx

— 97.58 Кб (Скачать файл)

В процессе течения высокоэластичная деформация достигает определенной величины, определяемой свойствами материала, режимами и условиями течения. Поэтому после заполнения формы она (высокоэластичная деформация) релаксирует (уменьшается). Но из-за охлаждения материала в прессформе (температура прессформы ниже температуры стеклования) уменьшается скорость релаксации. Уменьшение скорости и ограничение продолжительности релаксационного процесса приводит к остаточной (неполной) релаксации (сохраняющейся в деталях). Часть ориентированных полимерных цепей при этом остаются “замороженными” в неравновесных конформациях.

Ориентация распределена в продольном и поперечном сечении детали неравномерно. В результате возможности релаксации в начальные моменты впуска материала в прессформу ориентация уменьшена (отсутствие давления и неполный контакт с прессформой). Далее при двухмерном течении (к стенкам прессформы и вглубь ее) по радиусу и длине ориентация неравномерна, а ее характер распределения определяет режим течения.

Эксплуатационные свойства изделий из аморфных полимеров существенно зависят от степени ориентации в процессе формования: упорядоченная при ориентации структура полимера приводит к увеличению прочности в направлении течения и уменьшению прочности в направлении перпендикулярном течению материала, образованию внутренних напряжений. Это может приводить к растрескиванию изделий, образованию микротрещин (ухудшению оптических свойств, помутнению, появлению серебрения) особенно в местах спая встречных потоков материала, короблению, снижению размерной стабильности.

4.2.3. Характеристика способов горячего формования

Литье под давлением применяют для изготовления деталей из термо- и реактопластов.

При литье под давлением материал в гранулированном или порошкообразном виде поступает в пластикационный цилиндр литьевой машины, где прогревается и перемешивается вращающимся шнеком (в шнековых машинах). В поршневых машинах пластикация осуществляется только в результате прогрева. При переработке термопластов цилиндр нагревают до 200-350 С, при переработке реактопластов до 80-120 С. Пластифицированный материал при поступательном движении шнека или плунжера нагнетается в литьевую форму, где термопласты охлаждаются до 20-120 С (в зависимости от марки), а реактопласты нагреваются до 160-200 С. В прессформе материал выдерживают под давлением для уплотнения, что значительно снижает усадку при охлаждении вне формы.

Объем изделий ограничивается объемом материала, который может быть вытеснен червяком или поршнем при наибольшем ходе.

В разновидности метода, называемом ИНТРУЗИЕЙ, возможно на той же машине изготовить изделия значительно большего (в 2-3 раза) объема. При обычном режиме литья под давлением материал пластицируется вращающимся червяком, а нагнетается в форму невращающимя червяком при поступательном его движении. При интрузии пластикационный цилиндр снабжается соплом с широким каналом, позволяющим материалу перетекать в форму при вращении червяка до начала его поступательного двидения. Общая длительность цикла не увеличивается благодаря частичному совмещению отдельных переходов. Метод отличается высокой производительностью.

Литье под давлением термопластов и реактопластов имеет некоторую специфику . При литье под давлением термопластов молекулы материала ориентируются в направлении течения, что сопровождается упрочнением материала в направлении течения. Поток расплава термопласта в форме расширяется и перпендикулярно направлению течения в нем возникают ориентационные напряжения - этоя является еще одной причиной возникновения остаточных напряжений - различие в скоростях и степени охлаждения материала в поверхностных и внутренних слоях.

Ориентационные напряжения в готовом изделии уменьшить не удается, уменьшение их достигается путем подбора рабочих элементов конструкции прессформы. В местах спая обычно получают ухудшенные механические и многие другие свойства.

Термические напряжения можно снизить либо уменьшением перепада температур между материалом и прессформой, либо при последующем нагреве готовых изделий.

В ходе процесса под действием высоких температур и механических напряжений может происходить деструкция материала. Усадка в прессформе частично компенсируется ее подпиткой расплавом, находящимся под давлением при охлаждении формы, поэтому основная усадка происходит после извлечения из формы изделия. Ориентация макромолекул при литье обусловливает и анизотропию усадки вдоль и поперек направления течения расплава.

Режимы переработки некоторых термопластов представлены в таблице 3.

Режимы литья под давлением термопластичных пластмасс

При литье под давлением реактопластов должны строго регулировать температуру. При превышении оптимальной температуры происходит отверждение материала до заполнения формы. При пониженной температуре реактопласт плавится долго. Качество изделий не уступает по физико-механическим характеристикам изделиям, формованным другими методами.

Реактопласты льют под давлением реже, чем термопласты. Однако этот метод прогрессивен. Благодаря интенсивному перемешиванию материала в процессе подогрева скорость и степень отверждения материала при литье под давлением выше, чем при прессовании. Наиболее эффективен метод при изготовлении толстостенных изделий.

4.2.4. Прессование. Этот метод применяют преимущественно для формования реактопластов. В производстве используют две разновидности прессования: 1) прямое (открытое, компрессионное) прессование и 2) литьевое (трансферное) прессование (пресслитье).

При прямом прессовании в загрузочную камеру матрицы раскрытой прессформы загружается материал. При закрытии формы материал пластифицируется за счет нагрева от рабочих частей, заполняет оформляющую полость и отверждается. После разъема формы изделие из формы выталкивается.

Прямому прессованию отдают предпочтение при изготовлении точных простых деталей, переработке высоконаполненных материалов, производстве деталей максимально чистого цвета и деталей весом более 1 кг. По поверхности разъема при прямом прессовании возникает облой. Прямое прессование малопроизводительный способ производства.

Прямое прессование выполняется на гидравлических прессах, управление прессов полуавтоматическое; автоматически и точно регулируется температура с точностью 2 С и время выдержки с помощью установки “МАРС-200Р”.

Режимы прямого прессования для некоторых реактопластов представлены в таблице 4.

 

 

 

 

Таблица 4

Режимы прессования термореактивных пластмасс

       

без подогрева

с подогревом до

80-100 С

Обычном литьевом

   
                 

1

2

 

3

4

 

5

 

6

К-15-2, К-17-2, К-18-2, К-20-2, К-110-2, монолит-1,7

160-170

 

175-185

0.8-1

 

-

 

-

К-211-2, К-21-22, К-220-23

15-160

 

165

1-2.5

 

25-35

 

40-60

К-211-3

-

 

180-190

1.5-2.5

       

Аминопласт

135-145

 

165

1-1.5

 

25-35

 

-


 

При литьевом прессовании загрузочная камера отделена от формующей полости. Прессматериал кладут в загрузочную камеру, где пластифицируется при сжатии под действием теплп. Пластифицированный материал из загрузочной камеры перетекает в рабочую полость формы. Протекание по узкому каналу способствует однородному и полному нагреву и отверждению всей массы материала в форме. Это способствует сокращению выдержки материала в форме, уменьшению и даже полному избавлению от облоя.

Пресслитью отдают предпочтение при изготовлении толстостенных деталей, деталей с металлической арматурой, сложной конфигурацией, с тонкими стенками. Детали отличаются высокой размерной точностью.

Режимы пресслитья представлены в таблице 4.

Недостатком пресслитья является повышенный расход материала по сравнению с обычным прессованием, так как в загрузочной камере остается часть необратимого материала.

Заливка - это процесс, применяемый для изготовления изделий из компаундов или герметизации и изоляции компаундами изделий электронной и радиопромышленности.

Компаунды - это полимерные композиции на основе полимерного связующего с добавками пластификаторов, наполнителей, отвердителей и др. Компаунды представляют собой твердые или воскообразные массы, которые перед употреблением нагревают для перевода в жидкое состояние.

В зависимости от вязкости компаунда заливку осуществляют без давления или при небольшом давлении до 0,5 Мпа. В простейшем случае изготовления детали или герметизации и изоляции изделия компаунд из любой емкости заливают до краев формы или кожуха прибора.

Режимы отверждения (в зависимости от марки): температура от 20 до 180 С, время 1-18 часов.

Для более простой автоматизации процесса заливки иногда применяют засыпку таблетированного материала в форму, который при нагревании формы расплавляется и заполняет ее. Для автоматизации этого процесса в условиях крупносерийного производства применяют литье под давлением.

Намотка . Намотку применяют для изготовления изделий типа тел вращения. Исходными материалами для намотки являются нити (преимущественно стеклянные) и жидкотекучие полимерные материалы.

Способом намотки изготовляют цилиндрические оболочки, колпаки-обтекатели, трубчатые и другие изделия.

В процессах намотки используют высокопроизводительные намоточные станки и оправки, на которые наматывают нити с нанесенным на них полимерным материалом.

В практике изготовления изделий из стеклопластиков применяют два способа намотки: мокрый и сухой. При первом способе непосредственно перед намоткой на оправку производится пропитка стеклянного или другого волокна. При втором способе используют препрег - предварительно пропитанный связующий материалом стеклоармирующую нить. Второй - сухой способ, который обеспечивает более высокую производительность трудаЮ позволяет использовать широкую номенклатуру связующих и армирующих материалов, обеспечивает высокое качество изделий и поэтому его широко применяют в производстве. Первый - мокрый способ используют для изготовления изделий сложной конфигурации в единичном производстве. Связующими в процессе намотки являются полиэфирные и эпоксидные смолы.

Процесс изготовления намоткой состоит из следующих операций: 1 - подготовка технологической оснастки, включающая сборку оправки, установку ее на станок и подготовку станка, подготовку разделительного слоя, его нанесения на оправку и сушку; 2 - намотка, включающая установку кассет с препрегом на станок, послойную намотку с прикаткой; 3 - термообработка изделия (полимеризация связующего); 4 - разборка оправки; 5 - механическая обработка; 6 - контроль изделия и упаковка.

Основные способы намотки

1. Тангенциальная намотка  характерна постоянным шагом  намотки в одну или послойно  в одну и другую стороны; недостатки - низкая прочность в осевом  направлении; преимущества - простое  оборудование, высокая прочность  в тангенциальном направлении; малые  начальные напряжения.

2. Продольно-поперечная намотка  характерна укладкой слоев армирования  в продольном и поперечном  направлении; надостатки - возможна намотка трубчатых деталей и конических деталей только с небольшим уклоном; преимущества - сравнительно простое оборудование, высокая производительность, оптимальная анизотропия свойств.

3. Сочетание намотки по  спирали с тангенциальной характерно  намоткой двойного спирального  слоя с последующей намоткой  тангенциального слоя; недостатки - сложное оборудование, низкая производительность, большие отходы; преимущества - возможно  армирование в различных направлениях.

4. Спиральная намотка  характерна намоткой только спиральных  слоев с корректировкой углов  укладки по зонам; недостатки - сложное  програмное оборудование, низкая производительность, сложные оправки.

Информация о работе Физико-химические основы строения полимеров