Математика в дошкольном учебном заведении

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 08:31, реферат

Краткое описание

Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в подготовке детей дошкольного возраста к восприятию и усвоению математики — одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.
Выделившись из дошкольной педагогики, методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью. Предметом ее исследования является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания.

Содержание

Введение.
Задачи предматематической подготовки детей.
Методы предматематической подготовки.
Формы организации работы по развитию элементарных математических представлений у дошкольников.
Заключение.
Список литературы.

Вложенные файлы: 1 файл

Реферат по дошк.педагогике ФЭМП готов.docx

— 54.16 Кб (Скачать файл)

Сенсорные процессы (восприятие, представление) и способности (наблюдательность, глазомер) являются также основой целенаправленной работы, проводимой с детьми в русле их предматематической подготовки. Специальная организация сенсорного опыта создает почву для опосредованного познания, подготавливает к формированию математических понятий.

4. Расширение  словаря детей и совершенствование  связной речи. Процесс формирования  элементарных математических представлений  предполагает планомерное усвоение  и постепенное расширение словарного  запаса, совершенствование грамматического  строя и связности речи.

Количественные отношения ребенок отражает с помощью слов много, один, ни одного, столько, сколько, поровну, больше, меньше и  т.   д.,   которые  осознаются   в  результате непосредственных действий при сравнении отдельных предметов и их совокупностей. Заимствованные из речи окружающих слова-числительные наполняются   смыслом   и   используются   с   определенной   целью — узнать, сколько предметов. При счете ребенок учится на интуитивном уровне согласовывать числительное с существительным в роде, числе и падеже. Сравнение совокупностей предметов по количеству, а позже сравнение чисел требует построения и употребления довольно сложных речевых конструкций. В речевую форму облекаются не только результаты познавательной деятельности, но и ее способы. От ребенка требуют рассказать, что он сделал (например, на верхнюю полоску положил 6 красных кружков, а на нижнюю — 7 синих) и что получилось (синих кружков оказалось больше, чем красных, а красных — меньше, ем синих). Чем глубже осознаются математические связи, зависимости и отношения, тем более совершенные средства применяются для их отражения в речи.

Детей учат не только на чувственном уровне распознавать величины предметов, но и правильно отражать свои представления в слове, например: шире — уже, выше — ниже, толще — тоньше и т. д., отличая эти изменения от изменений общего объема (больше— меньше, большой — маленький). Такая дифференциация вполне доступна детям.

Предлоги, наречия, существительные, обозначающие пространственные отношения, становятся предметом особого внимания, осмысливаются, приобретают обобщенное значение в процессе обучения й, наконец, способствуют совершенствованию пространственной ориентации.

Дети осваивают и словарь временных обозначений: утро, день, вечер, ночь, вчера, сегодня, завтра, быстро, медленно, названия дней недели, месяцев, сезонов. Овладение значением этих слов помогает осмыслить «текучесть», длительность, периодичность времени, развивает «чувство времени».

С помощью слова не только отражаются, но глубже осознаются  и обобщаются количественные, пространственные и временные представления. Происходит обогащение речи и за счет овладения некоторыми специальными терминами (названия арифметических действий, общепринятых единиц измерения, геометрических фигур и т. д.). Их объем крайне незначителен, так как основное содержание речи детей составляет «чисто» бытовой словарь.

При   формировании   математических   представлений речевое развитие происходит не изолированно, а во взаимосвязи с сенсорными и мыслительными процессами.

5. Формирование  начальных форм учебной деятельности. Важную роль играет предматематическая  подготовка и для становления  начальных форм учебной деятельности. У детей вырабатываются   умения   слушать   и   слышать,   действовать   в соответствии с указаниями воспитателя, понимать и решать учебно-познавательные задачи определенными способами, использовать по назначению дидактический материал, выражать в словесной форме способы и результаты собственных действий и действий своих товарищей, контролировать и оценивать их, делать выводы и обобщения, доказывать их правильность и другие навыки и умения учебной деятельности. Ребенок овладевает математическими представлениями в основном на занятиях, находясь в коллективе сверстников, тем самым расширяется сфера и опыт коллективных взаимоотношений между детьми. В процессе формирования математических представлений у дошкольников развиваются организованность, дисциплинированность, произвольность психических процессов и поведения, возникают активность и интерес к решению задач.

Отмеченные задачи предматематической подготовки дошкольников имеют место в каждой группе детского сада, но конкретизируются с учетом возраста и индивидуальных особенностей. Для правильной ее постановки и реализации необходимо знание педагогом программы развития элементарных математических представлений не только той группы, с которой он работает; использование средств, методов, форм и способов организации работы, адекватных задачам и уровню развития детей; систематическая работа по реализации задач как на занятиях по формированию математических представлений, так и в повседневной жизни.

Задачи решаются не изолированно, а комплексно, в тесной связи друг с другом. Будучи в основном направленными на математическое развитие детей, они сочетаются с выполнением задач нравственного, трудового, физического и эстетического воспитания, т. е. всестороннего развития личности дошкольников. Комплексный подход к их осуществлению — наиболее эффективный путь обучения маленьких детей. Задачи определяют содержание предматематической подготовки в детском саду.

 

 

  1. Методы предматематической подготовки.

В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания: практические, наглядные, словесные, игровые.. При выборе способов и приёмов работы учитывается ряд факторов: цель, задачи, содержание формируемых математических представлений на данном этапе, возрастные и индивидуальные особенности детей, наличие необходимых дидактических средств, личное отношение воспитателя к тем или иным методам, конкретные условия и т. д. Среди многообразных факторов, влияющих на выбор того или иного метода, определяющими являются программные требования.

В предматематической подготовке дошкольников редко используются методы в «чистом» виде. Обычно они применяются комплексно, в разнообразных комбинациях друг с другом, важно, чтобы они позволяли достигать наилучших результатов при обучении маленьких детей. В формировании элементарных математических представлений ведущим принято считать практический метод. Сущность его заключается в организации практической деятельности детей, направленной на усвоение определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т. д.), на базе которых возникают элементарные математические представления.

Практический метод, в наибольшей мере соответствует как специфике и особенностям элементарных математических представлений, формируемых у дошкольников, так и возрастным возможностям, уровню развития их мышления, в основном наглядно-действенного и наглядно-образного. В мышлении маленького ребенка отражается, прежде всего, то, что вначале совершается в практических действиях с конкретными предметами, их изображениями или условными обозначениями.

Характерными особенностями практического метода при формировании элементарных математических представлений являются:

— выполнение разнообразных практических (материальных и материализованных) действий, служащих основой для умственных действий;

— широкое использование дидактического материала;

— возникновение представлений как результата практических действий с дидактическим материалом;

— выработка навыков счета, измерения, вычисления и рассуждения в самой элементарной форме;

— широкое использование элементарных математических представлений в практической деятельности, быту, игре, труде, т. е. в других видах деятельности.

Практический метод предполагает организацию упражнений. В процессе упражнений ребенок неоднократно повторяет практические и умственные действия. Упражнения могут предлагаться детям в форме заданий, организовываться как действия с демонстрационным материалом или протекать в виде самостоятельной работы с раздаточным дидактическим материалом. Используются как коллективные (выполняются всеми детьми одновременно), так и индивидуальные (осуществляются обычно у доски или у стола воспитателя) формы выполнения упражнений.

Коллективные упражнения, помимо усвоения и закрепления знаний, могут использоваться для контроля. Индивидуальные упражнения, выполняя те же функции, служат образцом, на который дети ориентируются в коллективной деятельности. Взаимосвязь между ними определяется не только общностью функций, но и постоянным чередованием, закономерной сменой друг друга. Упражнения должны дифференцироваться по степени сложности с учетом индивидуальных особенностей детей.

Игровые элементы включаются в упражнения во всех возрастных группах: в младших — в виде сюрпризного момента, имитационных движений, сказочного персонажа и т. д.; в старших — приобретают характер поиска, угадывания, соревнования. В таких случаях говорят об игровых упражнениях или упражнениях в игровой форме.

В детском саду широко используются однотипные упражнения, благодаря которым у дошкольников вырабатываются необходимые способы действий. Дети овладевают необходимыми умениями считать, измерять, вычислять. У них формируется круг элементарных математических представлений. При этом постоянно варьируются условия: меняются дидактический материал, форма организации детей, методические приемы и т. д. Благодаря элементу новизны такие упражнения не надоедают дошкольникам. Варьирование несущественных признаков при неизменности существенного является условием успешного формирования элементарных математических представлений.

При подборе упражнений учитывается не только их «сочетаемость» в одном занятии, но и дальнейшая перспектива. Система упражнений на одном занятии должна органично вписываться в общую систему разнообразных упражнений, проводимых в течение года.

Существующая в настоящее время система упражнений для каждой возрастной группы строится на принципе взаимосвязи. Каждое предыдущее и последующее упражнение имеет общие элементы: материал, способы действия, результаты и т. д. Сближаются во времени или одновременно даются упражнения на усвоение взаимосвязанных и взаимообратных способов действия (наложение — приложение и т. д.), отношений (больше — меньше, выше — ниже, шире — уже и т. д.), арифметических действий (сложение — вычитание, плюс — минус и т. д.).

В упражнениях должны быть предусмотрены все возможные варианты действий.

Сталкиваясь при выполнении упражнений с разными случаями проявления одних и тех же математических связей, зависимостей и отношений, ребенок легче и быстрее осознает их и в дальнейшем приходит к обобщению.

Продуктивные упражнения характеризуются тем, что способ действия дети должны полностью или частично открыть сами. Они развивают самостоятельность мышления, требуют творческого подхода,  вырабатывают  целенаправленность  и целеустремленность. Воспитатель обычно говорит, что надо делать, но не сообщает и не демонстрирует способа действия. При выполнении упражнений ребенок прибегает к мыслительным и практическим пробам, выдвигает предположения и проверяет их, мобилизует имеющиеся знания, учится использовать их в новой ситуации, проявляет сообразительность, смекалку. При выполнении таких упражнений воспитатель оказывает помощь лишь в косвенной форме, предлагает детям подумать и еще раз попробовать, одобряет правильные действия, напоминает об аналогичных упражнениях, которые ребенок уже выполнял, и т. д.

Соотношение продуктивных и репродуктивных упражнений определяется возрастом детей, имеющимся у них опытом решения практических и познавательных задач, характером самих математических представлений и уровнем их развития. С возрастом нарастает степень самостоятельности детей при выполнении  упражнений. Возрастает роль словесных указаний, пояснений и разъяснений, организующих и направляющих самостоятельную деятельность детей. Ребята  учатся, выполнив упражнение, рассказывать, что они делали и, что получилось в результате оценивают правильность своих действий и действий товарищей, осуществляя само- и взаимоконтроль.

При формировании элементарных математических представлений игра выступает как метод обучения и может быть отнесена к практическим методам.

Широко   используются   разнообразные   дидактические игры.

Благодаря обучающей задаче, облеченной в игровую форму (игровой замысел), игровым действиям и правилам ребенок непреднамеренно усваивает определенную «порцию» познавательного содержания. Все виды дидактических игр (предметные, настольно-печатные, словесные и др.) являются эффективным средством и методом формирования элементарных математических представлений у детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий время. Все они выполняют основные функции обучения — образовательную, воспитательную и развивающую. Существуют дидактические игры по формированию количественных представлений, представлений о величине, форме, фигурах, пространстве, времени. Таким образом, весьма перспективным является представить каждый раздел программы по «математике» в детском саду системой дидактических игр, служащих для упражнения детей в применении знаний.

Сами знания в виде способов действий и соответствующих им представлений ребенок получает первоначально вне игры, в играх лишь создаются благоприятные условия для их уточнения, закрепления, систематизации. Структура большинства дидактических игр не позволяет сообщить детям новые знания, однако это не означает, что в принципе такое невозможно.

В настоящее время разработана система так называемых обучающих игр. В отличие от существующих они позволяют формировать у детей принципиально новые знания, которые нельзя получить непосредственно из окружающей действительности, так как их содержанием являются абстрактные понятия математики. Основной их целью является подготовка  мышления дошкольника  к восприятию фундаментальных математических понятий: «множество и операции над множествами», «функция», «алгоритм» и т. д. В этих играх используется специфический дидактический материал, подобранный по определенным признакам. Моделируя математические понятия, он позволяет выполнять логические операции: разбиение множества  на  классы, отыскание объектов  по  необходимым и достаточным критериям и т. д. Игры, содержание которых ориентировано на формирование математических понятий, способствуют абстрагированию в мыслительной деятельности, учат оперировать обобщенными представлениями, формируют логические структуры мышления.

Информация о работе Математика в дошкольном учебном заведении