Автор работы: Пользователь скрыл имя, 11 Декабря 2013 в 15:58, курс лекций
Лекция № 1. Вычислительные комплексы и их классификация. Многопроцессорные вычислительные комплексы и систем. Классификация ВКиС. МВС для высокопроизводительных вычислений. Многопоточные системы
Вычислительная сеть – это совокупность компьютеров, соединенных линиями связи. Линии связи образованы кабелями, сетевыми адаптерами и другими коммуникационными устройствами. Все сетевое оборудование работает под управлением системного и прикладного программного обеспечения.
Рисунок 2 - Схематический вид архитектуры с раздельной памятью
Главным преимуществом систем с раздельной памятью является хорошая масштабируемость: в отличие от SMP-систем, в машинах с раздельной памятью каждый процессор имеет доступ только к своей локальной памяти, в связи с чем не возникает необходимости в потактовой синхронизации процессоров. Практически все рекорды по производительности на сегодня устанавливаются на машинах именно такой архитектуры, состоящих из нескольких тысяч процессоров (ASCI Red, ASCI Blue Pacific).
Недостатки:
1) Отсутствие общей памяти заметно снижает скорость межпроцессорного обмена, поскольку нет общей среды для хранения данных, предназначенных для обмена между процессорами. Требуется специальная техника программирования для реализации обмена сообщениями между процессорами;
2) Каждый процессор
может использовать только
3) Вследствие указанных
архитектурных недостатков
Системами с раздельной памятью являются суперкомпьютеры МВС-1000, IBM RS/6000 SP, SGI/CRAY T3E, системы ASCI, Hitachi SR8000, системы Parsytec.
Машины последней серии CRAY T3E от SGI, основанные на базе процессоров Dec Alpha 21164 с пиковой производительностью 1200 Мфлопс/с (CRAY T3E-1200), способны масштабироваться до 2048 процессоров.
При работе с MPP-системами используют так называемую Massive Passing Programming Paradigm – парадигму программирования с передачей данных (MPI, PVM, BSPlib).
Гибридная архитектура NUMA. Главная особенность гибридной архитектуры NUMA (nonuniform memory access) – неоднородный доступ к памяти.
Гибридная архитектура совмещает достоинства систем с общей памятью и относительную дешевизну систем с раздельной памятью. Суть этой архитектуры – в особой организации памяти, а именно: память физически распределена по различным частям системы, но логически она является общей, так что пользователь видит единое адресное пространство. Система построена из однородных базовых модулей (плат), состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью высокоскоростного коммутатора. Поддерживается единое адресное пространство, аппаратно поддерживается доступ к удаленной памяти, т.е. к памяти других модулей.
При этом доступ к локальной памяти осуществляется в несколько раз быстрее, чем к удаленной. По существу, архитектура NUMA является MPP (массивно-параллельной) архитектурой, где в качестве отдельных вычислительных элементов берутся SMP (cимметричная многопроцессорная архитектура) узлы. Доступ к памяти и обмен данными внутри одного SMP-узла осуществляется через локальную память узла и происходит очень быстро, а к процессорам другого SMP-узла тоже есть доступ, но более медленный и через более сложную систему адресации.
Структурная схема компьютера с гибридной сетью: четыре процессора связываются между собой при помощи кроссбара в рамках одного SMP-узла. Узлы связаны сетью типа "бабочка" (Butterfly).
Впервые идею гибридной архитектуры предложил Стив Воллох, он воплотил ее в системах серии Exemplar. Вариант Воллоха – система, состоящая из восьми SMP-узлов. Фирма HP купила идею и реализовала на суперкомпьютерах серии SPP. Идею подхватил Сеймур Крей (Seymour R.Cray) и добавил новый элемент – когерентный кэш, создав так называемую архитектуру cc-NUMA (Cache Coherent Non-Uniform Memory Access), которая расшифровывается как "неоднородный доступ к памяти с обеспечением когерентности кэшей". Он ее реализовал на системах типа Origin.
Рисунок 3 - Структурная схема компьютера с гибридной сетью
Организация когерентности многоуровневой иерархической памяти. Понятие когерентности кэшей описывает тот факт, что все центральные процессоры получают одинаковые значения одних и тех же переменных в любой момент времени. Действительно, поскольку кэш-память принадлежит отдельному компьютеру, а не всей многопроцессорной системе в целом, данные, попадающие в кэш одного компьютера, могут быть недоступны другому. Чтобы этого избежать, следует провести синхронизацию информации, хранящейся в кэш-памяти процессоров.
Для обеспечения когерентности кэшей существует несколько возможностей:
Наиболее известными системами архитектуры cc-NUMA являются: HP 9000 V-class в SCA-конфигурациях, SGI Origin3000, Sun HPC 15000, IBM/Sequent NUMA-Q 2000. Число процессоров в cc-NUMA-системах может превышать 1000 (серия Origin3000). Обычно вся система работает под управлением единой ОС, как в SMP. Возможны также варианты динамического "подразделения" системы, когда отдельные "разделы" системы работают под управлением разных ОС. При работе с NUMA-системами, так же, как с SMP, используют так называемую парадигму программирования с общей памятью (shared memory paradigm).
Лекция № 4. Параллельная архитектура векторных процессоров. PVP (Parallel Vector Process) – параллельная архитектура с векторными процессорами
Основным признаком PVP-систем является наличие специальных векторно-конвейерных процессоров, в которых предусмотрены команды однотипной обработки векторов независимых данных, эффективно выполняющиеся на конвейерных функциональных устройствах. Как правило, несколько таких процессоров (1-16) работают одновременно с общей памятью (аналогично SMP) в рамках многопроцессорных конфигураций. Несколько узлов могут быть объединены с помощью коммутатора (аналогично MPP). Поскольку передача данных в векторном формате осуществляется намного быстрее, чем в скалярном (максимальная скорость может составлять 64 Гбайт/с, что на 2 порядка быстрее, чем в скалярных машинах), то проблема взаимодействия между потоками данных при распараллеливании становится несущественной. И то, что плохо распараллеливается на скалярных машинах, хорошо распараллеливается на векторных. Таким образом, системы PVP-архитектуры могут являться машинами общего назначения (general purpose systems). Однако, поскольку векторные процессоры весьма дорого стоят, эти машины не могут быть общедоступными.
Наиболее популярны три машины PVP-архитектуры:
Парадигма программирования на PVP-системах предусматривает векторизацию циклов (для достижения разумной производительности одного процессора) и их распараллеливание (для одновременной загрузки нескольких процессоров одним приложением).
На практике рекомендуется выполнять следующие процедуры:
- производить векторизацию
вручную, чтобы перевести
- работать с векторами в виртуальном пространстве, разлагая искомую функцию в ряд и оставляя число членов ряда, кратное 128 или 256.
За счет большой физической памяти (доли терабайта) даже плохо векторизуемые задачи на PVP-системах решаются быстрее на машинах со скалярными процессорами.
Кластер представляет собой два или более компьютеров (часто называемых узлами), объединяемые при помощи сетевых технологий на базе шинной архитектуры или коммутатора и предстающие перед пользователями в качестве единого информационно-вычислительного ресурса. В качестве узлов кластера могут быть выбраны серверы, рабочие станции и даже обычные персональные компьютеры. Узел характеризуется тем, что на нем работает единственная копия операционной системы. Преимущество кластеризации для повышения работоспособности становится очевидным в случае сбоя какого-либо узла: при этом другой узел кластера может взять на себя нагрузку неисправного узла, и пользователи не заметят прерывания в доступе. Возможности масштабируемости кластеров позволяют многократно увеличивать производительность приложений для большего числа пользователей технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Такие суперкомпьютерные системы являются самыми дешевыми, поскольку собираются на базе стандартных комплектующих элементов ("off the shelf"), процессоров, коммутаторов, дисков и внешних устройств.
Кластеризация может осуществляться на разных уровнях компьютерной системы, включая аппаратное обеспечение, операционные системы, программы-утилиты, системы управления и приложения. Чем больше уровней системы объединены кластерной технологией, тем выше надежность, масштабируемость и управляемость кластера.
Типы кластеров. Условное деление на классы предложено Язеком Радаевским и Дугласом Эдлайном:
Класс I. Класс машин строится целиком из стандартных деталей, которые продают многие поставщики компьютерных компонентов (низкие цены, простое обслуживание, аппаратные компоненты доступны из различных источников).
Класс II. Система имеет эксклюзивные или не слишком широко распространенные детали. Таким образом можно достичь очень хорошей производительности, но при более высокой стоимости.
Наиболее распространенными типами кластеров являются:
- системы высокой надежности;
- системы для
- многопоточные системы.
Кластеры для высокопроизводительных вычислений предназначены для параллельных расчетов. Эти кластеры обычно собраны из большого числа компьютеров. Разработка таких кластеров является сложным процессом, требующим на каждом шаге согласования таких вопросов как инсталляция, эксплуатация и одновременное управление большим числом компьютеров, технические требования параллельного и высокопроизводительного доступа к одному и тому же системному файлу (или файлам) и межпроцессорная связь между узлами, и координация работы в параллельном режиме. Эти проблемы проще всего решаются при обеспечении единого образа операционной системы для всего кластера. Однако реализовать подобную схему удается далеко не всегда и обычно она применяется лишь для не слишком больших систем.
Многопоточные системы используются для обеспечения единого интерфейса к ряду ресурсов, которые могут со временем произвольно наращиваться (или сокращаться). Типичным примером может служить группа web-серверов.
В 1994 году Томас Стерлинг (Sterling) и Дон Беккер (Becker) создали 16-узловой кластер из процессоров Intel DX4, соединенных сетью 10 Мбит/с Ethernet с дублированием каналов. Они назвали его "Beowulf" по названию старинной эпической поэмы. Кластер возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проектно-конструкторские работы быстро превратились в то, что известно сейчас как проект Beowulf. Проект стал основой общего подхода к построению параллельных кластерных компьютеров, он описывает многопроцессорную архитектуру, которая может с успехом использоваться для параллельных вычислений. Beowulf-кластер, как правило, является системой, состоящей из одного серверного узла (который обычно называется головным), а также одного или нескольких подчиненных (вычислительных) узлов, соединенных посредством стандартной компьютерной сети. Система строится с использованием стандартных аппаратных компонентов, таких как ПК, запускаемые под Linux, стандартные сетевые адаптеры (например, Ethernet) и коммутаторы. Нет особого программного пакета, называемого "Beowulf". Вместо этого имеется несколько кусков программного обеспечения, которые многие пользователи нашли пригодными для построения кластеров Beowulf. Beowulf использует такие программные продукты как операционная система Linux, системы передачи сообщений PVM, MPI, системы управления очередями заданий и другие стандартные продукты. Серверный узел контролирует весь кластер и обслуживает файлы, направляемые к клиентским узлам.
Рассмотрим для примера задачу построения симметричной 16-процессорной системы, в которой все процессоры были бы равноправны. Наиболее естественным представляется соединение в виде плоской решетки, где внешние концы используются для подсоединения внешних устройств.
При таком типе соединения максимальное расстояние между процессорами окажется равным 6 (количество связей между процессорами, отделяющих самый ближний процессор от самого дальнего). Теория же показывает, что если в системе максимальное расстояние между процессорами больше 4, то такая система не может работать эффективно. Поэтому при соединении 16 процессоров друг с другом плоская схема является нецелесообразной. Для получения более компактной конфигурации необходимо решить задачу о нахождении фигуры, имеющей максимальный объем при минимальной площади поверхности. В трехмерном пространстве таким свойством обладает шар. Но поскольку нам необходимо построить узловую систему, вместо шара приходится использовать куб (если число процессоров равно 8) или гиперкуб, если число процессоров больше 8. Размерность гиперкуба будет определяться в зависимости от числа процессоров, которые необходимо соединить. Так, для соединения 16 процессоров потребуется четырехмерный гиперкуб. Для его построения следует взять обычный трехмерный куб, сдвинуть в нужном направлении и, соединив вершины, получить гиперкуб размером 4.
Архитектура гиперкуба является второй по эффективности, но самой наглядной. Используются и другие топологии сетей связи: трехмерный тор, "кольцо", "звезда" и другие.