Автор работы: Пользователь скрыл имя, 25 Октября 2013 в 09:54, курсовая работа
Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.
Теория массового обслуживания — область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. Большой вклад в развитие этой теории внесли российские математики А.Я. Хинчин, Б.В. Гнеденко, А.Н. Колмогоров, Е.С. Вентцель и др.
ЛИТЕРАТУРНЫЙ ОБЗОР
1 Математическое моделирование систем массового обслуживания
1.1 Элементы теории массового обслуживания 9
1.2 Классификация систем массового обслуживания 14
1.2.1 Классификация входных потоков 16
1.2.2. Классификация процессов обслуживания. 18
1.2.3 Классификация систем массового обслуживания по характеру обслуживания. 19
2 Имитационное моделирование систем массового обслуживания
2.1 «Когда другие методы беспомощны…» 28
2.2. Построение имитационной модели 30
2.3 Языки имитационного моделирования 34
2.3.1 Универсальный язык моделирования GPSS 37
ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРИИ МАССОВОГО ОБСЛУЖИВАНИЯ
2 Решение задачи математическими методами
2.1 Постановка задачи 49
2.1.2 Решение задачи 49
2.1.3 Решение задачи методом моделирования на GPSS 55
ЗАКЛЮЧЕНИЕ 60
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 62
,
, (1.11)
,
,
,
Теперь рассмотрим
более подробно СМО, имеющую n-
Система может находиться в одном состоянии S0, S1, S2,…,Sk,…,Sn,…, нумеруемых по числу заявок, находящихся в СМО: S0 – в системе нет заявок (все каналы свободны); S1 – занят один канал, остальные свободны; S2 – заняты два канала, остальные свободны;…, Sk – занято k каналов, остальные свободны;…, Sn – заняты все n каналов (очереди нет); Sn+1 – заняты все n каналов, в очереди одна заявка;…, Sn+r – заняты все n каналов, r заявок стоит в очереди, … .
Граф состояний показан на рисунке 7.
Рисунок 7 - Граф состояний многоканальной СМО с ожиданием
Обратим внимание, что по мере увеличения в СМО от 0 до n увеличивается число каналов обслуживания. При числе заявок в СМО, большем, чем n, интенсивность потока обслуживания сохраняется равной nµ.
Формулы для предельных состояний СМО с ожиданием выглядят следующим образом:
, (1.15)
, (1.16)
,
Вероятность того, что заявка окажется в очереди равна:
,
Для n-канальной СМО с ожиданием, используя прежние формулы, можно найти[4, 349 – 360]:
,
,
,
Несмотря на то, что математическое программирование и стохастическое моделирование имеют широкий диапазон применения, при рассмотрении многих важных задач организационного управления возникает необходимость обращаться к совершенно иным методам анализа [6].
Методы математического моделирования пока не смогут обеспечить исчерпывающего анализа таких задач организационного управления, как:
1. Формирование инвестиционной политики при перспективном планировании. Инвестиционная политика крупных фирма должна, в частности, учитывать финансовое обеспечение научно-исследовательских и опытно-конструкторских работ при создании новых видов продукции, возможности расширения рынка сбыта, критериальные оценки основных проектов, оценку степени риска при планировании тех или иных комплексов работ, источники финансирования (кредит, привлечение капитала продажей акций и т. д.), увеличение фонда заработной платы, размещение и сокращение финансовых активов, сравнительную оценку вариантов слияния с другой фирмой и приобретения последней и т. п. Полноценная операционная модель, с помощью которой можно было бы анализировать различные варианты инвестиционной политики, должна учитывать стохастическую природу и динамический характер инвестирования, а также предусматривать способ просеивания огромного количества стоящих перед фирмой альтернатив.
2. Выбор средств обслуживания (или оборудования) при текущем планировании. При этом рассматривались задачи определения количества контрольных прилавков в большом торговом центре, количества бензоколонок на бензозаправочной станции и количества лифтов в строящемся здании. Можно привести много других примеров, в которых рассматриваются вопросы распределения кадров, планировка заводских помещений, выбор мощности оборудования и т. д. Типичными вопросами, возникающими в связи с решением задачи выбора средств обслуживания или оборудования, являются вопросы, начинающиеся словами: сколько?, каких размеров? и как разместить?
3. Разработка планов
с обратной информационной
Почему описанные выше классы задач с трудом поддаются анализу? Причина заключается в необходимости одновременного учета факторов неопределенности, динамической взаимной обусловленности текущих решений и последующих событий, в комплексной взаимозависимости между управляемыми переменными исследуемой операционной системы, а в ряде случаев также и в том, что требуется рассматривать строго дискретную и четко определенную последовательность интервалов времени. Такого рода «глобальные» системные
задачи обладают слишком большой размерностью и наличием слишком большого количества внутренних взаимосвязей, в силу чего их не удается решить методами математического программирования [7].
Наиболее эффективным из существующих в настоящее время операционных методов, выходящих за рамки обычного математического программирования, является метод имитационного моделирования на ЭВМ.
При имитационном моделировании, прежде всего, строится экспериментальная модель системы. Затем производится сравнительная оценка конкретных вариантов функционирования системы путем «проигрывания» различных ситуаций на рассматриваемой модели.
При этом факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами исследуемой системы представляют в виде формул, хранящихся в памяти быстродействующей ЭВМ. Имитирование системы начинают с некоторого вполне конкретного исходного состояния. В результате принимаемых решений, а также вследствие ряда контролируемых и неконтролируемых событий, среди которых могут быть и события случайного характера, система переходит в последующие моменты времени в другие состояния. Эволюционный процесс, таким образом, продолжается до тех пор, пока не наступит конечный момент планового периода. Отрезки времени внутри планового периода нередко оказываются четко определенными и образуют упорядоченную последовательность на достаточно большом периоде имитирования.
Изложенные выше соображения
позволяют понять, почему метод имитационного
моделирования удается
Структуру имитационной модели в большинстве случаев удобно описывать, определяя содержание фигурирующих в ней динамических процессов и результатов функционирования имитируемой системы. Обычно динамические процессы протекают в соответствии с определенными правилами принятия решений. Результаты функционирования реальной системы, как правило, атрибутированы (т. е. имеют вполне определенный физический смысл). Кроме того, наблюдаются атрибутивные связи, устанавливающие способ суммирования результатов функционирования системы.
В любой момент времени
имитационная модель находится в
некотором вполне определенном состоянии.
Состояние системы характеризуе
Зная состояние системы
и ее динамику, можно определить
«действия» и состояния системы
во все последующие моменты времен
Построив модель, операционист
обязательно задается вопросом: «Насколько
она реалистична?» Более
При построении имитационной
модели, предназначенной для
1) Изучение действующей функциональной системы. Рассмотрим промышленную фирму, которая недавно зарегистрировала увеличение числа заказов на свою продукцию и отметила, затем заметное ухудшение качества обслуживания своих клиентов в части соблюдения сроков выполнения этих заказов. У этой фирмы может появиться желание построить имитационную модель, с помощью которой можно было бы изучить, каким образом существующие процедуры определения сроков выполнения принимаемых заказов, календарного планирования производства и оформления заявок на поставку сырья порождают наблюдаемые задержки.
2) Анализ гипотетической
функциональной системы.
3) Проектирование более
совершенной функциональной
Перейдем теперь к описанию этапов построения и использования имитационной модели.
Шаг 1. Построение модели. Содержание данного этапа почти не отличается от содержания этапа построения операционной модели любого другого типа. Опасность при этом заключается в излишней детализации модели, которая может привести к слишком большим затратам машинного времени при выполнении соответствующего эксперимента. Лучший способ уберечься от такого рода опасности заключается в том, чтобы постоянно помнить о конкретной цели исследования. Например, если модель должна помочь в выборе одного из двух вариантов размещения нового складского помещения, то, по-видимому, нет необходимости при построении имитационной модели делить плановый период на часы или дни: вполне достаточно использовать отрезки времени, продолжительность которых равняется 1 недели. Однако если с помощью модели нужно решить, сколько в новом складе должно быть погрузочно-разгрузочных платформ (например, одна или две), то, возможно, возникнет необходимость имитировать процесс функционирования упомянутого складского помещения, ориентируясь на отрезки времени продолжительностью от 5 до 15 мин.