Полупроводниковые диоды

Автор работы: Пользователь скрыл имя, 12 Мая 2013 в 23:50, реферат

Краткое описание

Полупроводниковые приборы начали развиваться бурными темпами. Транзистор был изобретен в 1948 г. в США. В 1955 г. в мире выпускалось 350 типов транзисторов, а в 1963 г. - уже 3000 типов. В 1956 г. только в США изготовлялось 14 млн. транзисторов в год, а в 1961 г. в Японии - 200 млн. транзисторов в год.
В нашей стране огромный вклад в развитие теории полупроводниковых приборов внесла школа академика А.Ф. Иоффе.
Полупроводниковые приборы не требуют подогрева, потребляют очень мало энергии, имеют малые габариты и вес.
В данном реферате рассматриваются диоды – одни из наиболее простых полупроводниковых приборов. Приводятся примерная классификация и их основные технические характеристики.

Содержание

Введение
1. Основные характеристики и параметры диодов и классификация диодов……………………………………………………………………………..5
2. Выпрямительные диоды …………………...………………………………….7
3. Стабилитроны ………………………………………………………..………13
4. Туннельные и обращенные диоды.…………………………………………..15
5. Варикапы …………………………………..…………………………..……18
6. Расчет электрических цепей с полупроводниковыми диодами………..….19
Литература

Вложенные файлы: 1 файл

полупроводниковые диоды.doc

— 1.40 Мб (Скачать файл)

БОУ Чувашской  Республики СПО «Чебоксарский электромеханический  колледж»

 

 

 

 

Реферат на тему:

 

Полупроводниковые диоды

 

 

 

           Выполнил: студент 2 курса группы Рэ1-11

              Герасимов Василий Юрьевич

                Проверил: Кондратьев Сергей Иванович

 

 

 

 

 

Чебоксары -2012

Содержание

Введение

1.  Основные характеристики и параметры диодов и классификация диодов……………………………………………………………………………..5

2. Выпрямительные  диоды …………………...………………………………….7

3. Стабилитроны ………………………………………………………..………13

4. Туннельные  и обращенные диоды.…………………………………………..15

5. Варикапы …………………………………..…………………………..……18

6. Расчет электрических цепей с полупроводниковыми диодами………..….19

Литература

  

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Электроника - это область науки, техники и производства, охватывающая исследование и разработку электронных приборов и принципов их использования.

Микроэлектроника - это раздел электроники, охватывающий исследование и разработку качественно нового типа электронных приборов - интегральных микросхем - и принципов их применения.

Как самостоятельная область науки  и техники электроника начала развиваться на границе XIX и XX вв., после открытия термоэлектронной эмиссии (1883 г.), фотоэлектронной эмиссии (1888 г.), разработки вакуумного диода (1903 г.) и вакуумного триода (1904 г.).

На становление и дальнейшее развитие электроники решающее влияние оказало изобретение радио (1885 г.). Вначале электроника развивалась только как радиоэлектроника, обслуживающая нужды радиотехники. Совершенствовались радиолампы. Большую роль в развитии электроники сыграла радиолокация в годы второй мировой войны.

Нерадиотехническое применение электроники долгое время развивалось под сильным влиянием радиоэлектроники, из которой заимствовались основные элементы, схемы и методы. Однако дальнейшее развитие нерадиотехнических применений электроники пошло по самостоятельному пути, прежде всего в области ядерных исследований (с 1943 г.), вычислительной техники (с 1949 г.) и массовой автоматизации производственных процессов. Особенно важным этапом в развитии электроники является послевоенный период.

Типичной конструкцией электронного устройства в конце войны было металлическое шасси с закрепленными на нем различными элементами. Основным электронным прибором была электронная лампа. Электронные устройства такой конструкции потребляли много энергии, выделяя много тепла, имели большой вес и габариты.

Средняя плотность монтажа была чрезвычайно низкой - до 0,01 элемента/см3. Развитие авиации и ракетостроения особенно остро поставило задачу значительного уменьшения габаритов и веса, снижения потребляемой мощности, уменьшения стоимости. Применение малогабаритных ламп и печатного монтажа увеличило среднюю плотность монтажа до 0,1 эл/см3. Сделать монтаж более компактным с электронными лампами было невозможно, из-за трудности отвода выделяемого тепла. Нужны были принципиально новые элементы и принципы конструирования. Такими новыми элементами явились полупроводниковые приборы, которые открыли новые широкие возможности в конструировании аппаратуры.

Полупроводниковые приборы начали развиваться бурными темпами. Транзистор был изобретен в 1948 г. в США. В 1955 г. в мире выпускалось 350 типов транзисторов, а в 1963 г. - уже 3000 типов. В 1956 г. только в США изготовлялось 14 млн. транзисторов в год, а в 1961 г. в Японии - 200 млн. транзисторов в год.

В нашей стране огромный вклад в  развитие теории полупроводниковых  приборов внесла школа академика А.Ф. Иоффе.

Полупроводниковые приборы не требуют  подогрева, потребляют очень мало энергии, имеют малые габариты и вес.

В данном реферате рассматриваются диоды – одни из наиболее простых полупроводниковых  приборов. Приводятся примерная классификация и их основные технические характеристики.

 

 

 

 

 

1.  ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ ДИОДОВ И КЛАССИФИКАЦИЯ ДИОДОВ

Полупроводниковый диод – это электропреобразовательный  полупроводниковый прибор с одним электрическим переходом и двумя выводами, в котором используются свойства р-n- перехода.

Полупроводниковые диоды классифицируются:

  1. по назначению: выпрямительные, высокочастотные и сверхвысокочастотные (ВЧ- и СВЧ- диоды), импульсные, полупроводниковые стабилитроны (опорные диоды), туннельные, обращенные, варикапы и др.;
  2. по конструктивно – технологическим особенностям: плоскостные и точечные;
  3. по типу исходного материала: германиевые, кремниевые, арсенидо - галлиевые и др.


 

 

 

 

Рис.1 Устройство точечных диодов

В точечном диоде  используется пластинка германия или  кремния с электропроводностью n- типа (рис.1), толщиной 0,1…0,6мм и площадью 0,5…1,5 мм2; с пластинкой соприкасается заостренная проволочка (игла) с нанесенной на нее примесью. При этом из иглы в основной полупроводник диффундируют примеси, которые создают область с другим типом электропроводности. Таким образом, около иглы образуется миниатюрный р-n- переход полусферической формы.

Для изготовления германиевых точечных диодов к пластинке  германия приваривают проволочку из вольфрама, покрытого индием. Индий  является для германия акцептором. Полученная область германия р- типа является эмиттерной.

Для изготовления кремниевых точечных диодов используется кремний n- типа и проволочка, покрытая алюминием, который служит акцептором для кремния.

В плоскостных  диодах р-n- переход образуется двумя полупроводниками с различными типами электропроводности, причем площадь перехода у различных типов диодов лежит в пределах от сотых долей квадратного миллиметра до нескольких десятков квадратных сантиметров (силовые диоды).

Плоскостные диоды  изготовляются методами сплавления (вплавления) или диффузии (рис.2).

Рис.2 – Устройство плоскостных диодов, изготовленных  сплавным (а) и диффузионным методом (б)

 

В пластинку  германия n- типа вплавляют при температуре около 500°С каплю индия (рис.2, а) которая, сплавляясь с германием, образует слой германия р- типа. Область с электропроводностью р- типа имеет более высокую концентрацию примеси, нежели основная пластинка, и поэтому является эмиттером. К основной пластинке германия и к индию припаивают выводные проволочки, обычно из никеля. Если за исходный материал взят германий р- типа, то в него вплавляют сурьму и тогда получается эмиттерная область n- типа.

Диффузионный  метод изготовления р-n- перехода основан на том, что атомы примеси диффундируют в основной полупроводник (рис.2, б). Для создания р- слоя используют диффузию акцепторного элемента (бора или алюминия для кремния, индия для германия) через поверхность исходного материала.

2. ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ

Выпрямительный  полупроводниковый диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

Выпрямительные  диоды выполняются на основе р-n- перехода и имеют две области, одна из них является более низкоомной (содержит большую концентрацию примеси), и называется эмиттером. Другая область, база – более высокоомная (содержит меньшую концентрация примеси).

В основе работы выпрямительных диодов лежит свойство односторонней проводимости р-n- перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.

Как известно, прямой ток диода создается основными, а обратный – не основными носителями заряда. Концентрация основных носителей заряда на несколько порядков превышает концентрацию не основных носителей, чем и обусловливаются вентильные свойства диода.

Основными параметрами  выпрямительных полупроводниковых  диодов являются:

  • прямой ток диода Iпр, который нормируется при определенном прямом напряжении (обычно Uпр = 1…2В);
  • максимально допустимый прямой ток Iпр мах диода;
  • максимально допустимое обратное напряжение диода Uобр мах, при котором диод еще может нормально работать длительное время;
  • постоянный обратной ток Iобр, протекающий через диод при обратном напряжении, равном Uобр мах;
  • средний выпрямленный ток Iвп.ср, который может длительно проходить через диод при допустимой температуре его нагрева;
  • максимально допустимая мощность Pмах, рассеиваемая диодом, при которой обеспечивается заданная надежность диода.

По максимально  допустимому значению среднего выпрямленного  тока диоды делятся на маломощные (Iвп.ср £ 0,3А), средней мощности (0,3А < Iвп.ср £ 10А) и большой мощности (Iвп.ср > 10А).

Для сохранения работоспособности  германиевого диода его температура не должна превышать +85°С. Кремниевые диоды могут работать при температуре до +150°С.

Рис.3 – Изменение вольт - амперной характеристики полупроводникового диода от температуры: а − для германиевого диода; б − для кремниевого диода

Падение напряжения при пропускании прямого тока у германиевых диодов составляет DUпр = 0,3…0,6В, у кремниевых диодов − DUпр = 0,8…1,2В. Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера р-n- переходов, сформированных в кремнии.

С увеличением температуры  прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера.

При подаче на полупроводниковый  диод обратного напряжения в нем  возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через р-n- переход.

При повышении температуры  р-n- перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает.

В случае приложения к диоду  обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) р-n- перехода. Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8)Uпроб.

Допустимое обратное напряжение германиевых диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.

Выпрямительные диоды  применяются для выпрямления  переменного тока (преобразования переменного  тока в постоянный); используются в  схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

В ряде мощных преобразовательных установок требования к среднему значению прямого тока, обратного напряжения превышают номинальное значение параметров существующих диодов. В этих случаях задача решается параллельным или последовательным соединением диодов.

Параллельное соединение диодов применяют в том случае, когда нужно получить прямой ток, больший предельного тока одного диода. Но если диоды одного типа просто соединить параллельно, то вследствие несовпадения прямых ветвей ВАХ они окажутся различно нагруженными и, в некоторых прямой ток будет больше предельного.

 

Рис.4 – Параллельное соединение выпрямительных диодов

Для выравнивания токов используют диоды с малым различием прямых ветвей ВАХ (производят их подбор) или последовательно с диодами включают уравнительные резисторы с сопротивлением в единицы Ом. Иногда включают дополнительные резисторы (рис.4, в) с сопротивлением, в несколько раз большим, чем прямое сопротивление диодов, для того чтобы ток в каждом диоде определялся главным образом сопротивлением Rд, т.е. Rд >> rпр вд. Величина Rд составляет сотни Ом.

Последовательное соединение диодов применяют для увеличения суммарного допустимого обратного напряжения. При воздействии обратного напряжения через диоды, включенные последовательно, протекает одинаковый обратный ток Iобр. однако ввиду различия обратных ветвей ВАХ общее напряжение будет распределяться по диодам неравномерно. К диоду, у которого обратная ветвь ВАХ идет выше, будет приложено большее напряжение. Оно может оказаться выше предельного, что повлечет пробой диодов.

 

Рис.5 – Последовательное соединение выпрямительных диодов

Для того, чтобы  обратное напряжение распределялось равномерно между диодами независимо от их обратных сопротивлений, применяют шунтирование диодов резисторами. Сопротивления Rш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений диодов Rш << rобр вд, чтобы ток, протекающий через резистор Rш, был на порядок больше обратного тока диодов.

 

3. СТАБИЛИТРОНЫ

Информация о работе Полупроводниковые диоды