Автор работы: Пользователь скрыл имя, 30 Мая 2013 в 21:13, контрольная работа
Работа выполняется в виде настоящей пояснительной записки. Пояснительная записка состоит из следующих частей.
Вступительная глава содержит полное задание на работу – параметры функциональных частей системы, ее структура, показатели качества.
В первой главе описан весь процесс исследования системы в линейном приближении и расчет общего коэффициента усиления, обеспечивающего необходимые показатели качества.
Введение 3
Задание на курсовую работу 4
Глава 1. Расчет системы в линейном приближении 6
1.1 Вывод уравнений 6
1.2 Структурная схема системы 8
1.3 Передаточная функция по команде 8
1.4 Передаточная функция для ошибки 10
1.5 Определение коэффициента усиления системы 10
1.6 Исследование номинальных режимов работы системы 11
1.7 D-разбиение по общему коэффициенту усиления 12
1.8 Логарифмические характеристики…………………………………………………..15
1.9 Корректирующее звено 15
1.10 Переходный процесс 21
Глава 2. Расчет с учетом нелинейности 21
2.1 Гармоническая линеаризация 21
2.2 Расчет автоколебаний методом Найквиста 22
Заключение 23
Список Литературы…………………………………………………………………………25
Министерство образования
ФГБОУ ВПО КНИТУ-КАИ им. А.Н.Туполева
Нижнекамский институт информационных технологий и
телекоммуникаций
Кафедра электрооборудования
Пояснительная записка к курсовой работе
по дисциплине "Теория автоматического управления"
Тема: Расчет системы регулирования напряжения.
Выполнил студент группы 27301 _________________ Ларшин И.С.
Руководитель _________________ Терентьев С.А.
(подпись)
Оценка _____________
___________ _________________
(подпись) (Фамилия И.О.)
Нижнекамск, 2013
Содержание
Введение
Теория автоматического управления сейчас является самой перспективной и развивающейся наукой. Это обусловлено тем, что сегодня получают все больше распространения такие разработки, как беспилотные самолеты, космические станции без пилотируемого управления (спутники), робототехнические системы и так далее. Все перечисленное является по своей сути системами автоматического управления.
В данной работе ставится задача рассмотреть
систему автоматического
Таким образом, после выполнения работы, можно будет смело сказать, что автор работы научился проектировать системы автоматического управления, по крайней мере, данного типа.
Работа выполняется в виде настоящей пояснительной записки. Пояснительная записка состоит из следующих частей.
Вступительная глава содержит полное задание на работу – параметры функциональных частей системы, ее структура, показатели качества.
В первой главе описан весь процесс исследования системы в линейном приближении и расчет общего коэффициента усиления, обеспечивающего необходимые показатели качества.
Во второй главе содержится расчет системы с учетом нелинейности, расчет параметров автоколебаний, исследование фазового портрета.
В заключении даются выводы о проведенной автором курсовой работе.
Задание
на курсовую работу
Дана система автоматического управления, схема которой изображена на рисунке I, и параметры устройств системы, приведенные в таблице I.
Рисунок I. Принципиальная схема системы регулирования напряжения (схема В).
В схеме приняты следующие
Далее представлены параметры всех устройств, содержащихся в принципиальной схеме в соответствии с выданным вариантом задания.
Таблица 1 Характеристики устройств системы
Р (кВт) |
U (В) |
iM (А) |
iОУ (А) |
RЯ (Ом) |
RОУ (Ом) |
LОУ (Гн) | |
Генератор |
630 |
700 |
880 |
40 |
0.025 |
6 |
6 |
ЭМУ |
12 |
250 |
48 |
0.06 |
0.2 |
42,0 |
2,5 |
Помимо этого другие элементы обладают следующими параметрами.
Выходное сопротивление
Параметры короткозамкнутой цепи ЭМУ: .
Параметры делителя: R1 = R2 = 1кОм;
Сопротивление нагрузки: Rн = 20Ом;
Параметры корректирующей цепи: R0 = 4кОм, R = 400кОм, С = 1мкФ.
Необходимые параметры качества:
Глава 1.
Расчет системы в линейном приближении
1.1 Вывод уравнений
Будем считать, что все звенья системы имеют линейные характеристики, за исключением электромашинного усилителя, у которого электродвижущая сила связана с током возбуждения нелинейной кривой намагничивания. Однако и здесь ее можно считать линейной при сравнительно небольших напряжениях (до половины номинального напряжения) можно считать линейной.
Таким образом, в рассматриваемой системе отпадает необходимость проведения линеаризации и можно сразу приступать к выводу уравнений. Для этого разобьем систему на динамические звенья и найдем их передаточные функции.
1. Дифференцирующий контур. Это стандартное звено со следующей передаточной функцией по напряжению, то есть передаточную функцию для выражения :
, (1.1.1)
где
Можно пренебречь временной постоянной в знаменателе, после чего получаем передаточную функцию первого элемента: .
2. Электронный усилитель. Считая усилитель безынерционным звеном, можно записать его передаточную функцию в виде:
, (1.1.2)
где
– коэффициент передачи усилителя
по напряжению.
Таким образом, получаем .
3. Обмотка управления ЭМУ. Запишем закон Кирхгофа для цепи управления ЭМУ:
(1.1.3)
Таким образом, упрощая и вводя временную постоянную, получаем передаточную функцию обмотки управления ЭМУ:
, где (1.1.4)
Уравнение элемента получаем следующее: .
Передаточная функция элемента:
4. Электромашинный
усилитель (ЭМУ). Записывая аналогичное
уравнение Кирхгофа для
, где (1.1.5)
Так, получили еще одно уравнение для очередного звена .
Передаточная функция элемента:
5. Обмотка возбуждения генератора (ОВГ). Дифференциальное уравнение можно записать на основе второго закона Кирхгофа.
, (1.1.6)
где
и
– суммарные индуктивность и сопротивление
цепи возбуждения с учетом якорного сопротивления
ЭМУ.
Приведем это уравнение к стандартному виду.
, (1.1.7)
Таким образом, находим передаточную функцию обмотки возбуждения генератора.
(1.1.8)
6. Генератор. Как было замечено ранее, считаем кривую намагничивания генератора в данном диапазоне токов и напряжений линейными. Таким образом, получаем из уравнения равновесия напряжений:
, (1.1.9)
где
– э.д.с. генератора (выход),
– ток обмотки возбуждения.
Причем передаточную функцию генератора по входу возьмем с учетом номинального сопротивления (номинальной нагрузки).
(1.1.10)
(1.1.11)
7. Цепь обратной связи обладает неединичным коэффициентом усиления, так как после генератора стоит делитель с такими параметрами, что:
(1.1.12)
(1.1.13)
По полученным передаточным функциям можем построить структурную схему системы.
1.2 Структурная схема системы
Рисунок 1.1. Структурная схема системы
1.3 Передаточная функция по
Необходимо найти передаточную функцию – передаточная функция замкнутой системы для скорости по команде .
Для этого рассмотрим систему в виде, изображенном на рис. 1.2, где после сбора всех элементов в один путем умножения передаточных функций последовательных звеньев и переноса сумматора, получен простой вид структурной схемы.
Рисунок 1.2. Упрощенный вид общей структурной схемы системы
После упрощения получена передаточная функция для напряжения по рассогласованию напряжений (передаточная функция разомкнутой системы):
. (1.3.1)
Подставляя полученные в §1.1 передаточные функции, получаем передаточную функцию разомкнутой системы.
(1.3.2)
В формуле (1.3.2) приняты следующие обозначения для коэффициентов усиления системы и местной обратной связи:
(1.3.3)
…и коэффициентов
(1.3.4)
При подстановке численных данных, получаем:
(1.3.3’)
(1.3.4’)
Таким образом, легко найти передаточную функцию замкнутой системы (выход по входу):
(1.3.5)
Также введен новый коэффициент усиления:
(1.3.6)
Пока проделанные вычисления и выкладки справедливы при отсутствии возмущений. Для расчета передаточной функции по возмущениям запишем регулируемую величину без учета команды:
. (1.3.7)
При замыкании обратной связи, получаем передаточную функцию для выхода по возмущению:
(1.3.8)
Таким образом, регулируемая величина запишется в операторном виде:
(1.3.9)
1.4 Передаточная функция для ошибки
Согласно предыдущему
Таким образом, найдется передаточная функция для ошибки по команде:
(1.4.1)
И передаточная функция для ошибки по возмущению:
(1.4.2)
1.5 Определение коэффициента
Для достижения необходимого параметра качества (в установившемся режиме) – статической ошибки – нужно подобрать соответствующий коэффициент усиления электронного усилителя, а, следовательно, и коэффициент усиления всей системы.
Итак, найдем статическую ошибку.
(1.5.1)
Так как система имеет статизм по отношению к возмущающему воздействию, то для нахождения статической ошибки необходимо использовать входное воздействие – функцию-константу, например:
. (1.5.2)
Итак, получаем изображение по Лапласу:
. (1.5.3)
Теперь находим установившуюся ошибку по формуле (1.5.1):
. (1.5.4)
Отсюда выводим область для необходимого коэффициента усиления электронного усилителя, учитывая, что необходимая ошибка должна быть меньше 2% от величины входного воздействия. Это обеспечивает коэффициент усиления: , следовательно:
(1.5.5)
Учитывая статическую ошибку, получаем, что .
Таким образом, можно выбрать электронный усилитель так, чтобы выполнялось условие качества по статической ошибке. Итак, выбираем электронный усилитель с коэффициентом усиления , те есть берем небольшой запас.
Общий коэффициент усиления разомкнутой системы найдется следующим образом:
.
И коэффициент усиления замкнутой системы:
. (1.5.6)
1.6 Исследование номинальных
Ставится задача в нахождении такого управления (величины напряжения на потенциометре), чтобы напряжение генератора было в установившемся режиме.
Допустим, было подано на вход искомое напряжение , тогда, руководствуясь §1.5, можем записать величину ошибки в установившемся режиме по формуле (1.5.4): .
Далее, величину выхода (напряжения генератора) в установившемся режиме мы знаем, следовательно, мы знаем, какое напряжение обратной связи создает эту ошибку, то есть .
Теперь можем записать уравнение сумматора для величины входа:
(1.6.1)
Решая уравнение (1.6.1) приходим к следующему:
(1.6.2)
Но для номинального режима работы системы недостаточно только задать входное напряжение, так как существует еще и номинальная нагрузка генератора. Поэтому ставится задача определить, как сильно влияет номинальное сопротивление нагрузки регулируемого и нерегулируемого генератора .
Рассмотрим нерегулируемый генератор (система без ООС). Тогда, при отсутствии входного напряжения, изменение регулируемой величины выглядит следующим образом:
(1.6.3)
Формула (1.6.3) в установившемся режиме запишется в виде предела.
(1.6.4)
Таким образом, напряжение будет уменьшаться на .
Теперь рассмотрим регулируемый генератор (система охвачена отрицательной обратной связью). В таком случае изменение напряжения запишется в виде:
(1.6.5)
Так, уменьшение будет на .
Вывод. Регулируемый генератор менее
подвержен изменению
1.7 D-разбиение по общему коэффициенту усиления
Запишем характеристическое уравнение передаточной функции замкнутой системы исходя из характеристического полинома – см. формулу (1.3.4).
(1.7.1)
Коэффициенты в формуле (1.7.1) соответствуют следующим коэффициентам:
Перед тем, как строить D-разбиение, обратимся к критерию Гурвица для определения критического коэффициента усиления.
Составим матрицу Гурвица.
(1.7.2)
Условия Гурвица запишутся в виде:
(1.7.3)
Подставляя коэффициент усиления в (1.7.3) как неизвестную величину, получим систему неравенств.