Контрольная работа по "Статистике"

Автор работы: Пользователь скрыл имя, 22 Февраля 2013 в 09:57, контрольная работа

Краткое описание

ЗАДАЧА №1
Произведите группировку магазинов №№ 7...30 (см. Приложение 1) по признаку стоимость основных фондов, образовав при этом 4 групп с равными интервалами.
Сказуемое групповой таблицы должно содержать следующие показатели:
1. число магазинов;
2. стоимость основных фондов;
3. размер товарооборота;
4. размер издержек обращения;
5. Уровень фондоотдачи (товарооборот стоимость основных фондов).
Примечание: В п.п. 2-4 показатели необходимо рассчитать в сумме и в среднем на один магазин. Сделайте выводы.

Вложенные файлы: 1 файл

Документ Microsoft Office Word.docx

— 224.83 Кб (Скачать файл)

 

Данные таблицы 2 говорят о том, что первая группа магазинов даёт наибольшую фондоотдачу, которая составляет 8,51, не смотря на то, что среди всей совокупности магазинов, магазины этой группы имеют наименьшие показатели товарооборота и среднегодовой  стоимость основных фондов.

                                        ЗАДАЧА №2

Используя построенный  в задаче №1 интервальный ряд распределения магазинов по стоимости основных фондов, определите:

1.             среднее квадратическое отклонение;

2.            коэффициент вариации;

3.            модальную величину.

Постройте гистограмму  распределения и сделайте выводы.

 

                                              ЗАДАЧА №3

С целью изучения средней месячной заработной платы и стажа работы работников торговых предприятий города было проведено 5-процентное выборочное обследование методом собственно-случайного бесповторного отбора.

Средняя месячная заработная плата 600 обследованных  работников составила 1240 руб., среднее квадратическое отклонение -204,6 руб.

В выборочной совокупности 480 работников имеют стаж более 3 лет.

Определите  для города в целом:

1.    С вероятностью 0,997 возможные пределы  средней месячной заработной платы.

2.    С вероятностью 0,954 возможные пределы  доли работников со стажем  до 3 лет.

Решение: РЕШЕНИЕ:

  1. Средняя месячная заработная плата находится в пределах:

- средняя величина выборочной  совокупности;

- предельная ошибка выборки  для средней;

- средняя величина генеральной  совокупности.

Так как  выборочное обследование было проведено методом собственно-случайного бесповторного отбора предельная ошибка выборки определяется по формуле:

- коэффициент доверия;

- дисперсия количественно варьирующего  признака выборочной совокупности;

 – численность выборки;

- численность единиц генеральной  совокупности.

Определим средний уровень признака по выборке, где Р=0,954, т.е. = 2, а численность единиц генеральной совокупности составит:

Таким образом, доверительные интервалы для  генеральной средней с вероятность  Р=0,954 составят:

или

  1. Доля работников со стажем до 3-х лет находится в пределах

 – доля единиц, обладающих  изучаемым признаком, выборочной  совокупности;

- предельная ошибка выборки  для доли;

- доля единиц, обладающих изучаемым  признаком, генеральной совокупности.

Определим долю работников со стажем до 3-х лет, используя формулу:

- число единиц, обладающих изучаемым  признаком, выборочной совокупности;

Таким образом, выборочная доля составит:

Ошибку  выборки для доли определим по формуле:

- дисперсия альтернативного  признака.

Таким образом, ошибка выборки, при вероятности  Р=0,997, т.е. =3, составит:

С вероятностью 0,997 можно утверждать, что доля работников со стажем до 3-х лет будет находиться в пределах:

или

Имеется следующая  информация о производстве товара «А»  предприятием за 1994 -1998 гг.:

Годы

2004

2005

2006

2007

2008

Объём выпуска, (тыс. шт.)

140

132

150

156

164


1.   Для  анализа погодовой динамики производства  товара «А» определите следующие  показатели динамики:

1.1.  абсолютные  приросты (цепные и базисные);

1.2.  темпы  роста и прироста (цепные и  базисные);

1.3. средний  абсолютный прирост и средний  темп прироста. Постройте график, характеризующий интенсивность  динамики

и сделайте выводы.

2. Произведите  анализ общей тенденции производства  товара «А» методом аналитического  выравнивания.     

2.1.   фактические  и теоретические уровни ряда  динамики нанесите на график;

2.2.  методом  экстраполяции тренда вычислите  прогнозное значение производства товара «А» в 2009 г.

Сделайте  выводы.

  1. Решение: Абсолютный прирост на базисной основе рассчитывается по формуле:

, где 

 – абсолютный прирост;

 – текущий уровень ряда  динамики;

- базисный уровень ряда динамики.

На основании  вышеуказанной формулы рассчитаем абсолютный прирост на базисной основе, взяв за базисный уровень 2001 год:

= 140 – 132 = 8 тыс. шт.

= 150 – 132 = 18 тыс. шт.

= 156 – 132 = 24 тыс. шт.

= 164 – 132 = 32 тыс. шт.

  1. Абсолютный прирост на цепной основе рассчитывается по формуле:

, где 

- абсолютный прирост на цепной  основе;

 –уровень ряда динамики, предшествующий  изучаемому периоду.

Таким образом, показатели абсолютного прироста на цепной основе будут следующими:

= 140 – 132 = 8 тыс. шт.

= 150 – 140 = 10 тыс. шт.

= 156 – 150 = 6 тыс. шт.

= 164 – 156 = 8 тыс. шт.

  1. Темп роста на базисной основе рассчитывается следующим образом:

 – темп роста на базисной  основе.

За базисный возьмём 2001 год:

  1. Темп роста на цепной основе рассчитывается следующим образом:

 – темп роста на цепной  основе.

  1. Темп прироста на базисной основе находится по формуле:

 – темп прироста на базисной  основе.

Рассчитаем  темп прироста, взяв за базисный период – 2001 год:

= 106,06 % – 100 %= 6,06 %

= 113,64 % – 100 %= 13,64 %

= 118,18 % – 100 %= 18,18 %

= 124,24 % – 100 %= 24,24 %

  1. Темп прироста на цепной основе:

- темп прироста на цепной  основе.

= 106,06 – 100 % = 6,06 %

= 107,14 % - 100 % = 7,14 %

= 104 % - 100 % = 4 %

= 105,13 % - 100 % = 5,13 %.

  1. Средний абсолютный прирост мы можем найти по следующей формуле:

 – средний абсолютный прирост;

 – конечный уровень ряда  динамики;

 – число периодов.

Таким образом, в нашей задаче средний абсолютный прирост составит:

  1. Средний темп роста рассчитаем по формуле:

 – средний темп роста.

Средний темп прироста получим. вычтя из среднего темпа роста 100 %:

- средний темп прироста.

Таким образом средний темп прироста составит:

На основании  полученных данных, построим график (рис. 1), характеризующий интенсивность  динамики.

Рис. 1. Интенсивность  динамики.

Из данного  графика видно, что наибольший абсолютный прирост производства товара «А»  приходится на 2005 год.

 

                                                ЗАДАЧА №5

Имеются следующие  данные о ценах и количестве проданных  товаров торговой фирмой за два периода:

Товары

Количество, (шт.)

Цена, (руб. за 1 шт.)

 

май

август

май

август

А

750

840

140,2

180,8

Б

380

300

155,6

158,4

В

475

510

240,2

266,3


Определите  индивидуальные и общие индексы: цен, физического объёма и товарооборота.

ЗАДАЧА №6

Имеются следующие  данные о реализации товаров торговым предприятием и изменении физического  объёма реализации:

Товарные группы

Товарооборот в фактических ценах, (млн. руб.)

Изменение физического объёма, (%)

 

базисный период

текущий период

А

14,8

18,2

-12

Б

34,3

25,8

+2

В

21,6

28,8

+7

Г

32,2

48,6

+10


Определите:

1.    Индивидуальные индексы: физического  объёма, цен и товарооборота.

2.    Общие индексы: цен и покупательной  способности рубля

3. Сумму экономического  эффекта, полученную торговым  предприятием от изменения цен реализации товаров.

Решение: Для удобства решения данной задачи построим вспомогательную таблицу (табл. 3), которую будем заполнять  в ходе решения:

Таблица 3.

Вспомогательная таблица.

Товары

А

750

840

140,2

138,8

105150

116592

117768

0,99

1,12

Б

380

300

155,6

158,4

59 128

47520

46680

1,02

0,79

В

475

510

240,2

226,3

114095

115413

122502

0,94

1,07

Итого

x

x

x

x

278373

279525

286950

x

x


 

Вначале рассчитаем индивидуальные индексы, которые  характеризуют изменение во времени  отдельных элементов той или  иной совокупности.

    1. Индивидуальный индекс цены находится по формуле:

 – индивидуальный индекс  цены;

 – цена в отчётном периоде;

- цена в базисном периоде.

Теперь рассчитаем индивидуальные индексы цены для  каждого товара и сделаем выводы на основании полученных данных:

Информация о работе Контрольная работа по "Статистике"