Автор работы: Пользователь скрыл имя, 02 Марта 2013 в 17:45, контрольная работа
Все шире используются статистические методы прогнозирования в деятельности плановых, аналитических, маркетинговых отделов производственных предприятий и объединений, торговых, страховых компаний, банков, правительственных учреждений. Теперь уже не требуется проводить вручную трудоемкие расчеты, строить таблицы и графики — всю эту черновую работу выполняет компьютер. Человеку же остается исследовательская, творческая работа: постановка задачи, выбор методов прогнозирования оценка качества полученных моделей, интерпретация результатов.
Введение 3
Виды и формы связей между явлениями 4
Понятие стохастической связи и задачи корреляционного анализа 7
Способы парной корреляции для изучения стохастических зависимостей…………………………………………………………………..10
Методика множественного корреляционного анализа 15
Заключение 22
Литература 23
Показатель эксцесса (Е) и его ошибка (mе) рассчитываются следующим образом:
В симметричном распределении А = 0. Отличие от нуля указывает на наличие асимметрии в распределении данных около средней величины. Отрицательная асимметрия свидетельствует о том, что преобладают данные с большими значениями, а с меньшими значениями встречаются значительно реже. Положительная асимметрия показывает, что чаще встречаются данные с небольшими значениями.
В нормальном распределении показатель эксцесса Е = 0. Если Е > 0, то данные густо сгруппированы около средней, образуя островершинность. Если Е < О, то кривая распределения будет плосковершинной. Однако, когда отношения А/ma и Е/me меньше 3, то асимметрия и эксцесс не имеют существенного значения и исследуемая информация подчиняется закону нормального распределения. В данном примере во всех случаях отношения А/ma и Е/me не превышают 3. Значит, исходная информация соответствует этому закону.
После отбора факторов и оценки исходной информации важной задачей в корреляционном анализе является моделирование связи между факторными и результативными показателями, т.е. подбор соответствующего уравнения, которое наилучшим образом описывает изучаемые зависимости.
Для его обоснования используются те же приемы, что и для установления наличия связи: аналитические группировки, линейные графики и др. Если связь всех факторных показателей с результативным носит прямолинейный характер, то для записи этих зависимостей можно использовать линейную функцию:
Изучение взаимосвязей между исследуемыми
факторами и уровнем
Задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы влияния факторных признаков на результативный. Для ее решения применяют методы корреляционного и регрессионного анализа.
Задачи корреляционного
Задачи регрессионного анализа – выбор типа модели, установление степени влияния независимых переменных на зависимую и определение расчетных значений зависимой переменной.
Решение всех названных задач приводит к необходимости комплексного использования этих методов.