Автор работы: Пользователь скрыл имя, 27 Мая 2013 в 22:33, курсовая работа
Большинство явлений и процессов в экономике находятся в постоянной взаимной и всеохватывающей объективной связи. Исследование зависимостей и взаимосвязей между объективно существующими явлениями и процессами играет большую роль в экономике. Оно дает возможность глубже понять сложный механизм причинно-следственных отношений между явлениями. Для исследования интенсивности, вида и формы зависимостей широко применяется корреляционно-регрессионный анализ, который является методическим инструментарием при решении задач прогнозирования, планирования и анализа хозяйственной деятельности предприятий.
Введение…………………………………………………………………………… 3
1. Уровни временного ряда и их хар-ка…………………………………………5
1.1 основные элементы временного ряда. Приведение уровня временного ряда к сопоставимому виду……………………………………………………………….5
1.2 Автокорреляция уровней временного ряда………………………………...10
2 моделирование тенденции временного ряда………………………………….14
2.1 методы выявления основной тенденции временного ряда………………..14
2.2 методы исключения тенденций………………………………………………17
3 статистические методы изучения взаимосвязей временных рядов…………20
3.1 специфика статистического изучения взаимосвязи временных рядов……20
3.2 статистическая оценка автокорреляции в остатках………………………...21
Заключение………………………………………………………………………..27
Список использованных источников……………………………………………28
Приложение А……………………………………………………………………..30
Приложение Б……………………………………………………………………..31
Приложение В……………………………………………………………………..32
Приложение А
Рисунок А.1 – Протокол расчета
параметров уравнения регрессии
с помощью статистического
Приложение Б
Таблица Б.1 - Значения статистик Дарбина-Уотсона при 5%-ном уровне значимости
|
||||||||||
6 |
0,61 |
1,40 |
||||||||
7 |
0,70 |
1,36 |
0,47 |
1,90 |
||||||
8 |
0,76 |
1,33 |
0,56 |
1,78 |
0,37 |
2,29 |
||||
9 |
0,82 |
1,32 |
0,63 |
1,70 |
0,46 |
2,13 |
||||
10 |
0,88 |
1,32 |
0,70 |
1,64 |
0,53 |
2,02 |
||||
11 |
0,93 |
1,32 |
0,66 |
1,60 |
0,60 |
1,93 |
||||
12 |
0,97 |
1,33 |
0,81 |
1,58 |
0,66 |
1,86 |
||||
13 |
1,01 |
1,34 |
0,86 |
1,56 |
0,72 |
1,82 |
||||
14 |
1,05 |
1,35 |
0,91 |
1,55 |
0,77 |
1,78 |
||||
15 |
1,08 |
1,36 |
0,95 |
1,54 |
0,82 |
1,75 |
0,69 |
1,97 |
0,56 |
2,21 |
16 |
1,10 |
1,37 |
0,98 |
1,54 |
0,86 |
1,73 |
0,74 |
1,93 |
0,62 |
2,15 |
17 |
1,13 |
1,38 |
1,02 |
1,54 |
0,90 |
1,71 |
0,78 |
1,90 |
0,67 |
2,10 |
18 |
1,16 |
1,39 |
1,05 |
1,53 |
0,93 |
1,69 |
0,82 |
1,87 |
0,71 |
2,06 |
19 |
1,18 |
1,40 |
1,08 |
1,53 |
0,97 |
1,68 |
0,85 |
1,85 |
0,75 |
2,02 |
20 |
1,20 |
1,41 |
1,10 |
1,54 |
1,00 |
1,68 |
0,90 |
1,83 |
0,79 |
1,99 |
21 |
1,22 |
1,42 |
1,13 |
1,54 |
1,03 |
1,67 |
0,93 |
1,81 |
0,83 |
1,96 |
22 |
1,24 |
1,43 |
1,15 |
1,54 |
1,05 |
1,66 |
0,96 |
1,80 |
0,86 |
1,94 |
23 |
1,26 |
1,44 |
1,17 |
1,54 |
1,08 |
1,66 |
0,99 |
1,79 |
0,90 |
1,92 |
24 |
1,27 |
1,45 |
1,19 |
1,55 |
1,10 |
1,66 |
1,01 |
1,78 |
0,93 |
1,99 |
25 |
1,29 |
1,45 |
1,21 |
1,55 |
1,12 |
1,66 |
1,04 |
1,77 |
0,95 |
1,89 |
26 |
1,30 |
1,46 |
1,22 |
1,55 |
1,14 |
1,65 |
1,06 |
1,76 |
0,98 |
1,88 |
27 |
1,32 |
1,47 |
1,24 |
1,56 |
1,16 |
1,65 |
1,08 |
1,76 |
1,01 |
1,86 |
28 |
1,33 |
1,48 |
1,26 |
1,56 |
1,18 |
1,65 |
1,10 |
1,75 |
1,03 |
1,85 |
29 |
1,34 |
1,48 |
1,27 |
1,56 |
1,20 |
1,65 |
1,12 |
1,74 |
1,05 |
1,84 |
30 |
1,35 |
1,49 |
1,28 |
1,57 |
1,21 |
1,65 |
1,14 |
1,74 |
1,07 |
1,83 |
Приложение В
Рисунок В.1 – Протокол расчета параметров уравнения регрессии с помощью статистического пакета СЭМП
Информация о работе Корреляционно-регрессионный анализ уровней временных рядов