Теплообменные аппараты

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 20:52, курсовая работа

Краткое описание

На современном нефтеперерабатывающем заводе, где осуществляется глубокая переработка нефти, на изготовление аппаратов, предназначенных для нагрева и охлаждения, затрачивается до 30 % общего расхода металла на все технологические установки. Высокая эффективность работы подобных аппаратов позволяет сократить расход топлива и электроэнергии, затрачиваемой на тот или иной технологический процесс, и оказывает существенное влияние на его технико-экономические показатели. Поэтому изучению устройства и работы этих аппаратов, а также освоению методов их расчета необходимо уделять особое внимание.

Вложенные файлы: 1 файл

1032818_A894E_teploobmennye_apparaty.doc

— 1.47 Мб (Скачать файл)

Для интенсификации теплообмена иногда используют турбулизаторы — элементы, турбулизирующие или разрушающие пограничный слой теплоносителя на наружной поверхности труб. Эффект теплоотдачи на наружной поверхности труб существенно повышают кольцевые канавки, интенсифицирующие теплообмен в межтрубном пространстве примерно в 2 раза турбулизацией потока в пограничном слое.

Естественно, что применение гладких труб в таких теплообменниках приводит к резкому увеличению их массы и размеров. Стремление интенсифицировать теплоотдачу со стороны малоэффективного теплоносителя (газы, вязкие жидкости) привело к разработке различных конструкций оребренных труб. Установлено, что оребрение увеличивает не только теплообменную поверхность, но и коэффициент теплоотдачи от оребренной поверхности к теплоносителю вследствие турбулизации потока ребрами. При этом, однако, надо учитывать возрастание затрат на прокачивание теплоносителя. Применяют трубы с продольными (рисунок 15а) и разрезными (рисунок 156) ребрами, с поперечными ребрами различного профиля (рисунок 15в). Оребрение на трубах можно выполнить в виде спиральных ребер (рисунок 15г), иголок различной толщины и др.

Эффективность ребра, которую можно характеризовать коэффициентом теплоотдачи, зависит от его формы, высоты и материала. Если требуется невысокий коэффициент теплоотдачи, необходимую эффективность могут обеспечить стальные ребра, при необходимости достижения больших коэффициентов целесообразно применение медных или алюминиевых ребер. Эффективность ребра резко снижается, если оно не изготовлено за одно целое с трубой, не приварено или не припаяно к ней.

Рисунок 15 -Трубы с оребрением

 

Кроме вставок и насадок теплообмен в трубах можно интенсифицировать применением шероховатых поверхностей, накаткой упомянутых кольцевых канавок, изменением поперечного сечения трубы ее сжатием. В этом случае даже при ламинарном режиме течения теплоносителя теплоотдача в трубах на 20...100% выше, чем в гладких трубах.

Если коэффициент теплоотдачи от среды, проходящей в трубах, на порядок ниже, чем коэффициент для наружной стороны труб, весьма выгодно использование в теплообменниках труб с внутренним оребрением. Примером является конструкция, показанная на рисунке 2.45а.

При теплообмене в системе газ-газ рационально в качестве теплообменной поверхности использовать пучки труб с внешними и внутренними ребрами. Для обеспечения направленного потока газа между наружными ребрами труб помещены треугольные вставки (рис. 2.456).

Кроме перечисленных методов, в отечественной и зарубежной практике делают попытки интенсифицировать теплопередачу и другими способами, например использованием вращающихся турбулизаторов.

 

1.3 Аппараты воздушного охлаждения

 

Широкое распространение в промышленности получили аппараты воздушного охлаждения (АВО), в которых в качестве охлаждающего агента используется поток атмосферного воздуха, нагнетаемый специально установленными вентиляторами. Использование аппаратов этого типа позволяет осуществить значительную экономию охлаждающей воды, уменьшить количество сточных вод, исключает необходимость очистки наружной поверхности теплообменных труб. Такие аппараты используются в качестве конденсаторов и холодильников. Сравнительно низкий коэффициент теплоотдачи со стороны потока воздуха, характерный для этих аппаратов, компенсируется значительным оребрением наружной поверхности труб, а также сравнительно высокими скоростями движения потока воздуха.

Аппараты воздушного охлаждения различного типа изготовляются по соответствующим стандартам, в которых предусмотрены большие диапазоны по величине поверхности, степени оребрения и виду конструкционного материала, используемого для их изготовления (сталь различных марок, латунь, алюминиевые сплавы, биметалл). Аппараты воздушного охлаждения (АВО) подразделяются на следующие типы: горизонтальные АВГ, зигзагообразные АВЗ, малопоточные АВМ, для вязких продуктов АВГ-В, для высоковязких продуктов АВГ-ВВ. На рисунке 16 приведен аппарат горизонтального типа, в котором оребренные пучки теплообменных труб расположены горизонтально, а на рисунке 17 — аппараты, где пучки труб расположены в виде шатра и зигзагообразно. Размещение пучков оребренных труб в виде шатра и зигзагообразное позволяет иметь большую поверхность теплообмена при той же занятой площади.

Для повышения эффективности аппарата в его конструкции предусмотрен коллектор впрыски очищенной воды 4, автоматически включающийся при повышенной температуре окружающей среды в летний период работы. При низких температурах (зимой) можно отключать электродвигатель и вентилятор; при этом конденсация и охлаждение происходят естественной конвекцией.

1 — секция оребренных труб; 2 — колесо вентилятора; 3 — электродвигатель; 4 — коллектор впрыска очищенной воды; 5 — жалюзи

Рисунок 16- Схема горизонтального аппарата воздушного охлаждения

 

Кроме этого интенсивность теплосъема можно регулировать, меняя расход прокачиваемого воздуха изменением угла наклона лопастей вентилятора. Для этого в аппаратах воздушного охлаждения предусмотрены механизм дистанционного поворота лопастей с ручным или пневматическим приводом и жалюзи, установленные над теплообменными секциями. Жалюзийные заслонки можно поворачивать вручную или автоматически с помощью пневмопривода.

Рисунок 17- Схемы аппаратов воздушного охлаждения АВЗ: а-шатровый; б-зигзагообразный

 

Теплообменная секция аппарата воздушного охлаждения  состоит из четырех, шести или восьми рядов труб 3, размещенных по вершинам равносторонних треугольников в двух трубных решетках 1. Трубы закреплены развальцовкой или развальцовкой со сваркой. Для обеспечения жесткости трубного пучка секция укреплена металлическим каркасом 4. Однако при эксплуатации гайки на шпильках 2, соединяющих решетку с каркасом, должны быть отвинчены на расстояние, превышающее возможное температурное удлинение труб. В трубном пучке каждая труба может иметь индивидуальный прогиб. Для исключения контакта ребер верхнего ряда труб с ребрами труб нижнего ряда между соседними рядами в нескольких местах по длине трубы помещают дистанционные прокладки 5 шириной около 15 мм из алюминиевой ленты толщиной 2 мм.

Рисунок 18- Теплообменная секция ABO

 

Крышки 6 крепят к трубным решеткам теплообменных секций при высоком давлении неразъемно или на шпильках. Если секция аппарата многоходовая, крышки снабжают перегородками, которые делят трубный пучок на ходы. Съемные крышки обычно выполняют литыми из стали. Как указано, трубы в аппаратах воздушного охлаждения имеют оребрение по наружной поверхности, поскольку коэффициент теплоотдачи на наружной поверхности труб примерно на порядок меньше коэффициента для внутренней поверхности. В аппаратах воздушного охлаждения используют вентиляторы с диаметром колеса до 7 м. Колеса вентиляторов изготовляют сварными из алюминия или из стеклопласта, диффузор — из листовой стали толщиной 2 мм. Электродвигатели привода могут быть одно- и двухскоростными. При использовании двухскоростных электродвигателей с понижением температуры окружающей среды можно работать при меньшей частоте вращения вентилятора.  

 

1.4 Теплообменные аппараты типа -«труба в трубе»

 

Теплообменные аппараты «труба в трубе» используют главным образом для охлаждения или нагревания в системе жидкость-жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния. Иногда такие теплообменники применяют при высоком давлении для жидких и газообразных сред, например, в качестве конденсаторов в производстве метанола, аммиака и др. Также их используют для загрязненных коксообразующими веществами и механическими примесями теплоносителей, в которых обеспечивается хороший теплообмен за счет больших скоростей и турбулентности потоков в трубном и межтрубном пространствах. Высокие скорости и турбулентность потока уменьшают возможность отложения на стенках труб кокса или других образований.

а — общий вид; б — вариант жесткого крепления труб; в — вариант крепления труб с компенсирующим устройством

Рисунок 19 -Теплообменник типа «труба в трубе»

 

По сравнению с кожухотрубчатыми теплообменники «труба в трубе» имеют меньшее гидравлическое сопротивление межтрубного пространства. Однако при равных теплообменных характеристиках они менее компактны и более металлоемки, чем кожухотрубчатые. Теплообменники «труба в трубе» могут быть разборными или неразборными, одно- и многопоточными.

Однопоточный неразборный теплообменник (рисунок 20) состоит из отдельных звеньев, в каждый из которых входят трубы наружная (или кожуховая) 1 и внутренняя (или теплообменная) 2. Наружная труба двумя приварными кольцами связана с внутренней трубой 2 в звено. Звенья, в свою очередь, собраны в вертикальный Ряд и составляют теплообменную секцию. При этом внутренние трубы соединены между собой коленами 3, а наружные — штуцерами 4 на фланцах или сваркой. Звенья закреплены скобами на металлическом каркасе 5.

Неразборные теплообменники являются конструкцией жесткого типа, поэтому при разности температур более 70 °С их не используют. При большей разности температур труб, а также при необходимости механической очистки межтрубного пространства применяют теплообменники с компенсирующим устройством на наружной трубе. В этом случае кольцевую щель между трубами с одной стороны наглухо заваривают, а с другой — уплотняют сальником 6.

Однопоточные неразборные теплообменники изготовляют из труб длиной 3...12 м с диаметром внутренних труб 25...159 мм и наружных соответственно 48... 219 мм на условное давление для наружных труб до 6,4 МПа и для внутренних до 16 МПа. В разборных конструкциях теплообменников обеспечивается компенсация деформаций теплообменных труб. На рис. 2.50 показана конструкция разборного многопоточного теплообменника «труба в трубе», конструктивно напоминающего кожухотрубчатый теплообменник типа ТУ.

Аппарат состоит из кожуховых труб 5, развальцованных в двух трубных решетках: средней 4 и правой 7. Внутри кожуховых труб размещены теплообменные трубы 6, один конец которых жестко связан с левой трубной решеткой 2, а другой — может перемещаться. Свободные концы теплообменных труб попарно соединены коленами 8 и закрыты камерой 9. Для распределения потока теплоносителя по теплообменным трубам служит распределительная камера 1, а для распределения теплоносителя в межтрубном пространстве — распределительная камера 3. Пластинами 11 кожуховые трубы жестко связаны с опорами 10.

Теплообменник имеет два хода по внутренним трубам и два по наружным. Узлы соединения теплообменных труб с трубной решеткой (узел I) и с коленами (узел II) уплотнены за счет прижима и деформации полушаровых ниппелей в конических гнездах.

Эти аппараты могут работать с загрязненными теплоносителями, так как внутреннюю поверхность теплообменных труб можно подвергать механической очистке. Поскольку возможность температурных удлинений кожуховых труб из-за жесткого соединения их с опорами ограниченна, перепад температур входа и выхода среды, текущей по кольцевому зазору, не должен превышать 150 °С.

 

Рисунок 20 -Разборный двухпоточный теплообменник типа «труба в трубе»

 

 

 

1.5 Погружные аппараты

 

Специфической особенностью аппаратов этого типа является наличие емкости-ящика, в которую погружены теплообменные трубы. В ящике находится охлаждающая среда, например вода. Аппараты этого типа используют в качестве холодильников или конденсаторов-холодильников. Различают змеевиковые и секционные аппараты. Принципиальное устройство однопоточного погружного конденсатора-холодильника показано на рисунке 21. Теплообменная поверхность состоит из труб, соединенных при помощи сварки или на фланцах; переход из одной трубы в другую осуществлен при помощи двойников. Охлаждаемый поток последовательно проходит трубы, расположенные в данном горизонтальном Ряду, после чего переходит в трубы следующего ряда и т. д.

1—пары нефтепродукта; // — охлажденный  нефтепродукт; /// — холодная вода; IV— нагретая вода

Рисунок 21- Схема однопоточного погружного змеевикового конденсатора-холодильника

 

При большом расходе охлаждающегося потока для уменьшения гидравлического сопротивления применяют коллекторные змеевиковые холодильники, в которых охлаждаемый поток при помощи специального коллектора разбивается на несколько параллельных потоков. Меньшее гидравлическое сопротивление коллекторного аппарата по сравнению с однопоточным достигается за счет снижения скорости потока и длины пути.

В случае использования подобного аппарата в качестве конденсатора-холодильника, когда вследствие частичной или полной конденсации объем потока резко уменьшается, можно применять коллекторные погружные аппараты с переменным числом потоков. В начале аппарата, где движутся в основном пары, объем которых значителен, число параллельных потоков может быть более высоким, чем в той части аппарата, где завершена конденсация паров и происходит охлаждение конденсата. Такое устройство полезно для повышения теплового эффекта аппарата, так как при сохранении первоначального числа потоков по всему их пути скорость движения конденсата в конечной части аппарата может оказаться небольшой, а следовательно, коэффициент теплопередачи в этой части аппарата будет низким. Следует иметь в виду, что неправильный выбор места сокращения числа потоков по пути конденсирующейся среды может привести к повышению гидравлических сопротивлений, как это имело место на некоторых действующих установках.

Информация о работе Теплообменные аппараты