Свойства полного факторного эксперимента. Математическая модель

Автор работы: Пользователь скрыл имя, 18 Июня 2014 в 16:10, реферат

Краткое описание

Развитие современной науки и техники связано с созданием новых и постоянным совершенствованием существующих научных и технологических процессов. Основой их разработки и оптимизации является эксперимент. Заметное повышение эффективности экспериментальных исследований и инженерных разработок достигается использованием математических методов планирования экспериментов. В процессе экспериментирования и при обработке полученных данных существенно сокращает сроки решения, снижает затраты на исследования и повышает качество полученных результатов.
Планирование эксперимента (англ. experimental design techniques) — комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента — достижение максимальной точности измерений при минимальном количестве проведенных опытов и сохранении статистической достоверности результатов.

Содержание

Введение 3
1 История возникновения планирования эксперимента 4
2 Этапы планирования эксперимента 9
3 Полный факторный эксперимент 13
4 Свойства полного факторного эксперимента 16
5 Математическая модель полного факторного эксперимента 18
Заключение 24
Список использованной литературы 26

Вложенные файлы: 1 файл

РЕФЕРАТ по планированию и организации эксперимента.doc

— 191.00 Кб (Скачать файл)

 


 


МИНИСТЕРСВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Забайкальский государственный университет»

(ФГБОУ ВПО «ЗабГУ»)

Факультет технологии, транспорта и связи

Кафедра технологических и биотехнических систем, автоматики и управления

 

 

 

 

 

 

Реферат

по дисциплине «Планирование и организация эксперимента»

на тему: Свойства полного факторного эксперимента. Математическая модель

 

 

 

 

 

                                                                       Выполнил магистрант гр. ТМм-13

                                                                      Рыбас А.А.

                                                             Проверил: профессор д.т.н. Свинин В.М.

 

 

 

 

 

 

Чита 2013 

Содержание

 

 

Введение

 

Развитие современной науки и техники связано с созданием новых и постоянным совершенствованием существующих научных и технологических процессов. Основой их разработки и оптимизации является эксперимент. Заметное повышение эффективности экспериментальных исследований и инженерных разработок достигается использованием математических методов планирования экспериментов. В процессе экспериментирования и при обработке полученных данных существенно сокращает сроки решения, снижает затраты на исследования и повышает качество полученных результатов.

Планирование эксперимента (англ. experimental design techniques) — комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента — достижение максимальной точности измерений при минимальном количестве проведенных опытов и сохранении статистической достоверности результатов.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Планирование эксперимента применяется при поиске оптимальных условий, построении интерполяционных формул, выборе значимых факторов, оценке и уточнении констант теоретических моделей и др

 

 

 

1 История возникновения планирования эксперимента

 

Планирование эксперимента– продукт нашего времени, однако истоки его теряются в глубине веков.

Истоки планирования эксперимента уходят в глубокую древность и связаны с числовой мистикой, пророчествами и суевериями.

Это собственно не планирование физического эксперимента, а планирование числового эксперимента, т.е. расположение чисел так, чтобы выполнялись некоторые строгие условия, например, на равенство сумм по строкам, столбцам и диагоналям квадратной таблицы, клеточки которой заполнены числами натурального ряда.

Такие условия выполняются в магических квадратах, которым, по-видимому, принадлежит первенство в планировании эксперимента.

Согласно одной легенде примерно в 2200 г. до н.э. китайский император Ю выполнял мистические вычисления с помощью магического квадрата, который был изображен на панцире божественной черепахи.

Квадрат императора Ю

4 9 2

3 5 7

8 1 6

Клетки этого квадрата заполнены числами от 1 до9, и суммы чисел по строкам, столбцам и главным диагоналям равны 15.

В 1514 г.немецкий художник Альбрехт Дюрер изобразил магический квадрат в правом углу своей знаменитой гравюры-аллегории«Меланхолия».Два числа в нижнем горизонтальном ряду A5 и 14) составляют год создания гравюры. В этом состояло своеобразное«приложение»магического квадрата.

Квадрат Дюрера

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

В течение нескольких веков построение магических квадратов занимало умы индийских, арабских, немецких, французских математиков.

В настоящее время магические квадраты используются при планировании эксперимента в условиях линейного дрейфа, при планировании экономических расчетов и составлении рационов питания, в теории кодирования и т.д.

Построение магических квадратов является задачей комбинаторного анализа, основы которого в его современном понимании заложены Г. Лейбницем.Он не только рассмотрел и решил основные комбинаторные задачи, но и указал на большое практическое применение комбинаторного анализа: к кодированию и декодированию, к играм и статистике, к логике изобретений и логике геометрии, к военному искусству, грамматике, медицине, юриспруденции, технологии и к комбинации наблюдений. Последняя область применения наиболее близка к планированию эксперимента.

Одной из комбинаторных задач, имеющей прямое отношение к планированию эксперимента, занимался известный петербургский математик Л. Эйлер. В 1779 г. он предложил задачу о 36 офицерах как некоторый математический курьез.

Он поставил вопрос, можно ли выбрать 36офицеров 6 рангов из 6 полков по одному офицеру каждого ранга от каждого полка и расположить их в каре так, чтобы в каждом ряду и в каждой шеренге было бы по одному офицеру каждого ранга и по одному от каждого полка. Задача эквивалентна построению парных ортогональных6x6 квадратов. Оказалось, что эту задачу решить невозможно. Эйлер высказал предположение, что не существует пары ортогональных квадратов порядка п=1 (mod 4).

Задачей Эйлера, в частности, и латинскими квадратами вообще занимались впоследствии многие математики, однако почти никто из них не задумывался над практическим применением латинских квадратов.

В настоящее время латинские квадраты являются одним из наиболее популярных способов ограничения на рандомизацию при наличии источников неоднородностей дискретного типа в планировании эксперимента. Группировка элементов латинского квадрата, благодаря своим свойствам(каждый элемент появляется один и только один раз в каждой строке и в каждом столбце квадрата),позволяет защитить главные эффекты от влияния источника неоднородностей. Широко используются латинские квадраты и как средство сокращения перебора в комбинаторных задачах.

Возникновение современных статистических методов планирования эксперимента связано с именем Р. Фишера.

С 1918 г. он начал свою известную серию работ на Рочемстедской агробиологической станции в Англии. В 1935 г. появилась его монография«Design of Experiments», давшая название всему направлению.

Среди методов планирования первым был дисперсионный анализ (кстати, Фишеру принадлежит и термин «дисперсия»).Фишер создал основы этого метода, описав полные классификации дисперсионного анализа (однофакторный и многофакторный эксперименты)и неполные классификации дисперсионного анализа без ограничения и с ограничением на рандомизацию. При этом он широко использовал латинские квадраты и блок-схемы. Вместе с Ф. Йетсом он описал их статистические свойства. В1942 г. А. Кишен рассмотрел планирование по латинским кубам, которое явилось дальнейшим развитием теории латинских квадратов.

Затем Р. Фишер независимо опубликовал сведения об ортогональных гипер-греко-латинских кубах и гипер-кубах.Вскоре после этого 1946–1947 гг.)Р. Рао рассмотрел их комбинаторные свойства. Дальнейшему развитию теории латинских квадратов посвящены работы X. МаннаA947–1950 гг.).

Исследования Р. Фишера, проводившиеся в связи с работами по агробиологии, знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йегс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью полного факторного эксперимента является необходимость ставить сразу большое число опытов.

В 1945 г.Д. Финни ввел дробные реплики от факторного эксперимента. Это позволило резко сократить число опытов и открыло дорогу техническим приложениям планирования. Другая возможность сокращения необходимого числа опытов была показана в 1946 г. Р. Плакеттом и Д. Берманом, которые ввели насыщенные факторные планы.

В 1951 г. работой американских ученых Дж. Бокса и К. Уилсона начался новый этап развития планирования эксперимента.

Эта работа подытожила предыдущие. В ней ясно сформулирована и доведена до практических рекомендаций идея последовательного экспериментального определения оптимальных условий проведения процессов с использованием оценки коэффициентов степенных разложений методом наименьших квадратов, движения по градиенту и отыскания интерполяционного полинома (степенного ряда) в области экстремума функции отклика(«почти стационарной»области).

В 1954–1955 гг.Дж. Бокс, а затем Дж. Бокс и П. Юл показали, что планирование эксперимента можно использовать при исследовании физико-химических механизмов процессов, если априори высказаны одна или несколько возможных гипотез. Здесь планирование эксперимента пересекалось с исследованиями по химической кинетике. Интересно отметить, что кинетику можно рассматривать как метод описания процесса с помощью дифференциальных уравнений, традиции которого восходят к И. Ньютону. Описание процесса дифференциальными уравнениями, называемое детерминистическим, нередко противопоставляется статистическим моделям.

Бокс и Дж. Хантер сформулировали принцип ротатабельности для описания«почти стационарной»области, развивающейся в настоящее время в важную ветвь теории планирования эксперимента. В той же работе показана возможность планирования с разбиением на ортогональные блоки, указанная ранее независимо де Бауном.

Дальнейшим развитием этой идеи было планирование, ортогональное к неконтролируемому временному дрейфу, которое следует рассматривать как важное открытие в экспериментальной технике –значительное увеличение возможностей экспериментатора.

 

2 Этапы планирования эксперимента

 

Методы планирования эксперимента позволяют минимизировать число необходимых испытаний, установить рациональный порядок и условия проведения исследований в зависимости от их вида и требуемой точности результатов. Если же по каким-либо причинам число испытаний уже ограничено, то методы дают оценку точности, с которой в этом случае будут получены результаты. Методы учитывают случайный характер рассеяния свойств испытываемых объектов и характеристик используемого оборудования. Они базируются на методах теории вероятности и математической статистики.

Планирование эксперимента включает ряд этапов.

1. Установление цели эксперимента (определение характеристик, свойств  и т. п.) и его вида (определительные, контрольные, сравнительные, исследовательские).

2. Уточнение условий проведения эксперимента (имеющееся или доступное оборудование, сроки работ, финансовые ресурсы, численность и кадровый состав работников и т. п.). Выбор вида испытаний (нормальные, ускоренные, сокращенные в условиях лаборатории, на стенде, полигонные, натурные или эксплуатационные).

3. Выявление и выбор входных  и выходных параметров на основе  сбора и анализа предварительной (априорной) информации. Входные параметры (факторы) могут быть детерминированными, то есть регистрируемыми и  управляемыми (зависимыми от наблюдателя), и случайными, то есть регистрируемыми, но неуправляемыми. Наряду с ними на состояние исследуемого объекта могут оказывать влияние нерегистрируемые и неуправляемые параметры, которые вносят систематическую или случайную погрешность в результаты измерений. Это — ошибки измерительного оборудования, изменение свойств исследуемого объекта в период эксперимента, например, из-за старения материала или его износа, воздействие персонала и т. д.

4. Установление потребной точности  результатов измерений (выходных параметров), области возможного изменения входных параметров, уточнение видов воздействий. Выбирается вид образцов или исследуемых объектов, учитывая степень их соответствия реальному изделию по состоянию, устройству, форме, размерам и другим характеристикам. 
На назначение степени точности влияют условия изготовления и эксплуатации объекта, при создании которого будут использоваться эти экспериментальные данные. Условия изготовления, то есть возможности производства, ограничивают наивысшую реально достижимую точность. Условия эксплуатации, то есть условия обеспечения нормальной работы объекта, определяют минимальные требования к точности. 
Точность экспериментальных данных также существенно зависит от объёма (числа) испытаний — чем испытаний больше, тем (при тех же условиях) выше достоверность результатов. Для ряда случаев (при небольшом числе факторов и известном законе их распределения) можно заранее рассчитать минимально необходимое число испытаний, проведение которых позволит получить результаты с требуемой точностью.

5. Составление плана и проведение  эксперимента — количество и  порядок испытаний, способ сбора, хранения и документирования  данных. 
Порядок проведения испытаний важен, если входные параметры (факторы) при исследовании одного и того же объекта в течение одного опыта принимают разные значения. Например, при испытании на усталость при ступенчатом изменении уровня нагрузки предел выносливости зависит от последовательности нагружения, так как по-разному идет накопление повреждений, и, следовательно, будет разная величина предела выносливости. 
В ряде случаев, когда систематически действующие параметры сложно учесть и проконтролировать, их преобразуют в случайные, специально предусматривая случайный порядок проведения испытаний (рандомизация эксперимента). Это позволяет применять к анализу результатов методы математической теории статистики. Порядок испытаний также важен в процессе поисковых исследований: в зависимости от выбранной последовательности действий при экспериментальном поиске оптимального соотношения параметров объекта или какого-то процесса может потребоваться больше или меньше опытов. Эти экспериментальные задачи подобны математическим задачам численного поиска оптимальных решений. Наиболее хорошо разработаны методы одномерного поиска (однофакторные однокритериальные задачи), такие как метод Фибоначчи, метод золотого сечения.

Информация о работе Свойства полного факторного эксперимента. Математическая модель