Автор работы: Пользователь скрыл имя, 20 Ноября 2013 в 09:45, курсовая работа
Целью выполнения курсовой работы по разделу «Линейные электрические цепи однофазного синусоидального тока» дисциплины «основы теории электрических цепей» является:
1. Закрепление теоретических знаний, по этому разделу и самостоятельное применение их к анализу простейших и сложных электрических цепей.
2. Выработка навыков и умений в выполнении типового анализа цепей.
В данной работе мною рассмотрены и описаны основные принципы анализа линейных электрических цепей в установившемся синусоидальном режиме.
Введения
Раздел 1.Теоретические аспекты и ознакомление с электрическими цепями синусоидального тока
Раздел 2. Мгновенная мощность цепи синусоидального тока
Раздел 3. Анализ и методы расчета электрических цепей
3.1 Законы Кирхгофа
3.2 Метод контурных токов
3.3 Принцип суперпозиции
3.4 Метод межузлового напряжения
Раздел 4. Цепи синусоидального тока и фазовые соотношения между их напряжением и током, элементы R,L,C
Заключение
Список литературы
Для сопротивления R: (Рис. 8)
Рис. 8 - участок цепи с сопротивлением R.
, , где Um=RIm,, ju=ji
Перейдем к проекциям вращающихся векторов:
,
=>
Так как
,
Тогда
:
Для индуктивности L (Рис. 9 )
Рис. 9 - Участок цепи с индуктивностью L
,
.
,
ju=ji + 900.
: - комплексное сопротивление индуктивности.
- комплексное сопротивление индуктивности.
Для емкости C: (Рис. 3.6)
Рис. 3.6 - Участок цепи с емкостью С.
,
ju=ji - 900.
: - комплексное сопротивление емкости.
Таким образом, для любого элемента в цепи синусоидального тока - некоторое комплексное число по размерности соответствует сопротивлению, и поэтому его называют комплексом полного сопротивления и обозначают . Тогда:
,
,
.
представляет закон Ома в символической форме.
Комплекс полного
,
где:
- коэффициент пропорциональности между амплитудными или действующими значениями напряжения и тока на данном элементе;
показывает на сколько фаза напряжения больше фазы тока на данном элементе.
Иногда строят треугольник сопротивлений. Фактически это и есть изображение комплекса полного сопротивления на комплексной плоскости.
Рис. 10 - Изображение комплекса полного сопротивления на комплексной плоскости.
Величина , как любое комплексное число, может быть представлена в показательной, тригонометрической или алгебраической форме:
,
где - вещественная часть комплекса полного сопротивления, ее называют активной составляющей комплекса полного сопротивления;
- мнимая часть комплекса
- модуль комплекса полного
- фаза комплекса полного сопротивления, изменяется в пределах .
Величину обратную комплексу полного сопротивления называют комплексом полной проводимости (КПП):
,
где .
Для получения в "буквах" активной и реактивной составляющих комплекса полной проводимости по заданным в "буквах" активной и реактивной составляющим комплекса полного сопротивления:
;
Таким образом, используя полученные формулы, расчетным путем можно получить фазовые соотношения напряжений и токов RLC - цепи, и, построив диаграммы по этим значениям, наглядно пронаблюдать за поведением напряжений и токов, с учетов сдвигов по фазе.
Заключение
Расчеты электрических цепей являются неотъемлимой частью при проектировании любого электрооборудования.
Любой элемент
электрической цепи в малой и
большей степени оказывает
И поэтому, именно
знание таких законов, как закон
Ома, законы Кирхгоффа и др., а
также известных методов
Данные законы и методы были применены в практической части курсовой работы при расчете цепи параллельного соединения RLC - элементов, и были сделаны соотствующие выводы.
Список литературы
синусоид ток напряжение
1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.
2. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М.Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)
3. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н.Зуб, С.М.Милюков. Рязань, 2005. 16 с.
4. Теоретические основы электротехники. / Г.И. Атабеков, С.Д. Купалян, А.В. Тимофеев, С.С. Хухриков.-М.: Энергия, 1979. 424 с.
5. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.
Информация о работе Ознакомление с электрическими цепями синусоидального тока