Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 21:21, реферат
Сканирующий Зондовый Микроскоп (СЗМ) - это прибор, дающий возможность исследования свойств поверхностей материалов от микронного до атомарного уровня. В СЗМ существует три способа исследования поверхностей:
Сканирующая туннельная микроскопия (СТМ)
Сканирующая силовая микроскопия (ССМ)
Близкопольная сканирующая микроскопия (БСМ).
1.ВВЕДЕНИЕ. 2
2.ОСНОВНАЯ ЧАСТЬ. 2
2.1 Что такое сканирующая зондовая микроскопия. 2
2.2 Современные методы исследований СЗМ. 5
2.2.1 Методики СТМ. 5
2.2.1.1 Объекты исследования. 6
2.2.1.2 Режимы работы СТМ. 7
Режим топографии (I=сопst). 7
Режим регистрации тока (Z=const). 7
Режим ошибки обратной связи (FВ-еrrоr). 8
2.2.2 Методики ССМ . 8
2.2.2.1 Контактный режим. 9
Силы, действующие между кантилевером и образцом 10
2.2.2.2 Топография поверхности (режим постоянной 11
силы)
2.2.2.3 Режим снятия изображения сил. 15
2.2.2.4 Режим регистрации ошибки обратной связи. 16
2.2.2.5 Измерение боковых сил. 16
2.2.3 Вибрационные и модуляционные методы
измерений. 17
2.2.3.1 СТМ-методы. 18
Режим измерения локальной высоты барьера. 18
Режим спектроскопии. 20
2.2.3.2 АСМ-методы: 20
Бесконтактный режим. 20
Полуконтактный режим. 22
Режим измерения жесткости. 23
2.2.4 Схема взаимодействия компонентов. 24
2.2.5 Схема регистрации отклонения кантилевера. 25
3. ЗАКЛЮЧЕНИЕ. 26
4. ЛИТЕРАТУРА. 27
1.2.3.1 СТМ-методы
Режим измерения локальной высоты барьера
В режиме измерения локальной высоты потенциального барьера для туннелирующих элекронов, которую можно с некоторой натяжкой называть локальной работой выхода, сигнал модуляции прикладывается к 2-обкладкам пьезотрубки. Обратная связь в процессе сканирования поддерживает низкочастотную составляющую туннельного тока постоянной. При этом регистрируется амплитуда высокочастотных колебаний туннельного тока, модуляцией туннельного промежутка из-за вызванных вибраций пьезотрубки.
В приближении простейшей одномерной
модели туннелирования электрона через
прямоугольный потенциальный
Дифференцированием этого множителя получаем;
и,следовательно
т.е. производная туннельного тока по ширине туннельного зазора, нормированная на сам туннельный ток, дает информацию о локальной высоте потенциального барьера. Так как среднее значение туннельного тока в процессе сканирования поддерживается постоянным, и амплитуда вибрации пьезотрубки не меняется, то полученная в результате сканирования картина распределения амплитуды колебаний туннельного тока как раз и содержит информацию о распределении величины Fi , и, следовательно, о химических свойствах поверхности. Реальная ситуация не столь проста, и амплитуда колебаний туннельного тока зависит еще от геометрии поверхности, от состава адсорбатов которые искажают форму потенциального барьера и кроме того, при измерениях на воздухе из-за наличия адсорбатов между иглой и поверхностью всегда существует заметная сила отталкивания, т.к. игла должна "продавить" слой адсорбата, прежде чем возникает заметный туннельный ток.
Это приводит к зависимости результатов измерений от локальной жесткости образца Так, в местах, где жесткость образца ниже, вибрация приводит в большей степени к деформации самого образца, а не к деформации адсорбата и изменению туннельного зазора. Амплитуда модуляции туннельного тока уменьшается, создавая впечатление относительно пониженной работы выхода.Этот эффект следует учитывать при интерпретации результатов.
Режим спектроскопии
В режиме спектроскопии модулируется туннельное напряжение и между образцом и иглой, и регистрируется амплитуда отклика туннельного тока на эту модуляцию. При этом постоянная составляющая туннельного напряжения остается неизменной, и обратная связь поддерживает постоянное среднее значение туннельного тока. Таким образом, результат измерения представляет собой производную dI/dU в заданной точке вольт-амперной характеристики. Поскольку форма вольт-амперной характеристики опрелеляется в первую очередь энергетическим спектром объемных и поверхностных электронных состояний иглы и образца, этот режим и получил название режима спектроскопии.
В режиме спектроскопии, как и в режиме измерения локальной высоты барьера, важно, чтобы обратная связь успевала с высокий точностью поддерживать постоянным среднее значение I (если усилитель работает не в логарифмическом режиме), поскольку на многих образцж изменение среднего значения I из-за неровностей рельефа может привести к гораздо большим отклонениям амплитуды колебаний туннельного тока, чем изменение свойств поверхности.
2.2.3.2 АСМ-методы
К числу вибрационных методов АСМ относятся бесконтактный, полуконтактный режим и режим локальной жесткости.
Бесконтактным режим
Бесконтактный режим обеспечивает измерение Ван-дер-Ваальсовых электронных, магнитных сил вблизи поверхности, причем сила взаимодействия может быть очень малой (порядка 10-12Н), что позволяет исследовать очень чувствительные или слабо связанные с поверхностью объекты, не разрушая, и не сдвигая их.
Вкладыш - держатель кантилевера (Рис.9) содержит пьезокерамическую пластинку, вибрации которой передаются кантилеверу и возбуждают его колебания на требуемой частоте, которая во всех разновидностях этого метода выбирается в пределах одного из резонансных пиков на амплитудно-частотной характеристике (АЧХ).
Рис. 9
Возбуждающий сигнал формируется цифровым синтезатором, содержащим высокостабильный кварцевый генератор, что позволяет поддерживать частоту сигнала с относительной точностью не хуже 10-5-10-6. Переменная составляющая сигнала с четырехсекционного фотодиода, обусловленная колебаниями кантилевера, усиливается и попадает на вход синхронного детектора, который можно формировать:
Вблизи поверхности образца вибрирующий с малой амплитудой кантилевер попадает в неоднородное силовое поле. Наличие градиента силы приводит к частотному сдвигу резонансного пика. Поэтому в случае возбуждения сигналом фиксированной частоты амплитуда и фаза колебаний кантилевера в неоднородном поле меняется.
Если обратная связь в процессе сканирования меняет положение зонда по нормали к образцу поддерживая амплитуду, либо фазу колебаний кантилевера постоянной (режим топографии),то результатом записи сигнала на выходе ОС в процессе сканирования является поверхность постоянного градиента силы.
Можно регистрировать изменения амплитуды либо фазы колебаний в процессе сканирования, не меняя расстояние между зондом и основанием образца (режим постоянной высоты). Возможен также режим, предусматривающий предварительное сканирование, топографии в контактном или полуконтактном режиме, после чего производится повторное сканирование по тому же участку с поддержанием заданного удаления зонда от поверхности в каждой точке сканирования с регистрацией амплитуды либо фазы. Этот режим позволяет отделить информацию о магнитных и электрических свойствах поверхности от топографических данных , т.к. Вандер-Ваальсово притяжение кантилевера и поверхности остается практически неизменным при повторном сканировании, поскольку расстояние между зондом и поверхностью не меняется, и, значит изменение амплитуды и фазы колебаний вызываются другими дальнодействующими силами - электрическими либо магнитными.
Минимально возможное
Полуконтактный режим
Характерной особенностью полуконтактного
режима является то, что большую
часть периода колебаний
Режим измерения жесткости.
В режиме измерения локальной жесткости сигнал модуляции подается на 2-обкладки пьезотрубки. При этом игла кантилевера касается поверхности, и вибрация образца передается кантилеверу. Измеряемой величиной является амплитуда колебаний балки кантилевера. Коэффициент передачи колебаний образца в колебания балки кантилевера пропорционален отношению жесткости системы игла- поверхность в данной точке к жесткости балки. В одном предельном случае абсолютно гибкого кантилевера с жесткой иглой на жестком образце, колебания пьезотрубки полностью передаются балке. В другом предельном случае очень жесткого кантилеверана гибком или легко деформируемом образце и/или при мягкой игле колебания трубки приводят лишь к деформации поверхности и иглы, тогда как балка остается неподвижной. Следует помнить, что жесткость системы игла-образец зависит не только от модулей Юнга соприкасающихся поверхностей, но и от их геометрии, в частности, от радиусов кривизны. Наибольшая жесткость в области контакта достигается в случае поверхностей равных по величине кривизны, но противоположного знака, т.е., в случаев контакта круглого острия иглы с круглой впадиной того же радиуса.
Поэтому режим измерения локальной
жесткости будет
2.2.4 Схема взаимодействия
На (Рис.10) схематично изображены составляющие компоненты присущие СЗМ;
- процессор,
- блок питания,
- рабочая станция.
Рис. 10
2.2.5 Схема регистрации отклонения кантилевера
В ССМ корпорации МДТ использована оптическая схема регистрации отклонений кантилевера (Рис.11), которая, являясь относительно несложной, позволяет регистрировать суб-ангстремные отклонения кантилевера. Источником является полупроводниковый лазер Lyambda=670 нм, Р = 0,9 мВт, луч которого фокусируется на зеркальной поверхности кантилевера в районе острия. Отраженный от кантилевера свет попадает на четырехсекционный фотодиод, усиленный разностный сигнал от которого позволяет определять угловое отклонение кантиклевера с точностью менее 0.1нм, что обеспечивает разрешение по вертикали 0.1нм.
- -
Информация о работе Сканирующая туннельная зондовая микроскопия