Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 14:23, реферат
В восьмой главе было введено понятие поля, сформулирована концепция близкодействия, принятая в современной физике, и рассмотрены четыре вида взаимодействия, т.е. четыре вида полей. В настоящем разделе мы рассмотрим, что такое принцип суперпозиции, чем описание поля отличается от описания вещества, какие параметры вводятся для описания всех видов полей.
Согласно концепции близкодействия, взаимодействие между телами на расстоянии осуществляется посредством особого состояния материи - поля. Тела или частицы, участвующие в взаимодействии, создают в окружающем их пространстве особое состояние - поле.
109
ФИЗИКА НЕПРЕРЫВНОГО
15. ФИЗИЧЕСКИЕ ПОЛЯ
15.1. Описание физических полей.
В восьмой главе было введено понятие поля, сформулирована концепция близкодействия, принятая в современной физике, и рассмотрены четыре вида взаимодействия, т.е. четыре вида полей. В настоящем разделе мы рассмотрим, что такое принцип суперпозиции, чем описание поля отличается от описания вещества, какие параметры вводятся для описания всех видов полей.
Согласно концепции
Основное отличие поля от рассматриваемых нами ранее тел или частиц заключается в том, что оно локализовано во всем пространстве. Для описания состояния частицы требовалось задать ограниченное число параметров равное числу степеней свободы. (Для материальной точки это радиус-вектор r, задаваемый тремя проекциями на оси координат). Поскольку, число точек в пространстве бесконечно, бесконечно и число степеней свободы, а значит, и число параметров, которые нужно задать для описания поля. Это не означает, что в действительности нужно задавать бесконечное число параметров. Достаточно задать закон, по которому меняется поле в пространстве и начальные параметры, чтобы знать параметры поля в любой точке пространства.
Поле проявляется в силовом воздействии на тела или частицы, в него помещенные. Т.е. на частицу или тело в любой точке пространства, где имеется поле, действует сила F. Одной из важнейших количественных характеристик поля, является напряженность. Напряженность поля определяется как отношение силы, действующей на тело, к величине той количественной характеристики, которая участвует в создании поля и определяется полем, поэтому напряженность называют силовой характеристикой поля. Существенно, что напряженность поля является векторной величиной, так же как и сила, через которую она определяется.
Чтобы понять сказанное, рассмотрим примеры. Электрическое поле создается зарядами Q. Значит, напряженность электрического поля равна отношению силы, действующей на заряд q, к величине этого заряда. Напряженность электрического поля обозначается как Е и она равна: E=F/q. Напряженность гравитационного поля определяется как E = F/m. Магнитное поле создается движущимися зарядами (или токами); в природе отсутствуют магнитные заряды. С точностью до констант, определяемых выбором системы единиц, напряженность магнитного поля H можно определить как отношение силы, действующей на проводник с током c длиной, равной единице к величине тока I, протекающего через проводник: H = F/ I.
В чем же состоит преимущество описания полей на языке напряженностей? Может было бы проще и удобнее просто задать силу, действующую на тело в каждой точке? Дело в том, что сила зависит как от характеристик поля, так и от характеристик объекта, в него помещенного (его электрического заряда, массы, протекающего тока и т.п.). Напряженность же поля зависит только от свойств поля.
Таким образом, поле задано, если в каждой точке пространства известна его напряженность. На рисунках удобно изображать поле при помощи силовых линий. Силовыми линиями поля называются такие линии, касательные к которым в каждой точке совпадают с вектором напряженности поля. Другими словами, силовая линия определяет направлена напряженности поля в каждой точке, через которую она проходит. Силовые линии позволяют определять также и величину напряженности поля. Силовые линии рисуют таким образом, чтобы число их, пересекающих единичную площадку численно равнялось напряженности поля в данной точке. На рис. 15.1.а изображены силовые линии поля, создаваемого положительным электрическим зарядом Q. Они гуще вблизи заряда, где напряженность поля больше, и реже вдали от заряда. На больших расстояниях от заряда соседние силовые линии идут практически параллельно друг - другу. Такое поле называется однородным (рис.15.1.б).
Введем еще одно важное понятие - поток вектора напряженности поля. Поток вектора напряженности поля - F через площадь S определяется числом силовых линий, пересекающих через эту площадь. Отметим, что поток вектора напряженности - скалярная величина. Существуют более строгие определения этого понятия, но на данный момент вполне достаточно, что поток численно равен числу силовых линий пересекающих рассматриваемую поверхность.
Очевидно, что величина потока вектора определяется взаимным направлением силовых линий и площади S. На рис.15.1б изображены две площади S1 и S2. Площади различны, но количество силовых линий, их пересекающих, одинаково, следовательно потоки вектора напряженности одинаковы. Введем вектор S, численно равный площади S, и направленный перпендикулярно ей. Тогда поток вектора напряженности FЕ однородного поля Е будет равен скалярному произведению векторов Е и S:
, где a - угол между векторами Е è S. Из этого определения следует, что поток вектора через площадку, параллельную силовым линиям поля, равен нулю.
Другой важнейшей характеристикой поля может быть его потенциал. Это понятие можно ввести лишь для полей консервативных сил (см. раздел 11). Потенциал поля - j определяется как отношение потенциальной энергии тела в поле, к величине той количественной характеристики, которая участвует в создании поля и определяется полем, поэтому потенциал называют энергетической характеристикой поля. Существенно, что потенциал поля - скалярная величина.
Снова зададим себе вопрос, чем же удобно описание полей на языке потенциалов? Может было бы проще и удобнее вместо потенциала просто задать величину потенциальной энергии тела в каждой точке? Ответ на этот вопрос будет почти таким же, как и для напряженности поля. Дело в том, что потенциальная энергия зависит как от характеристик поля, так и от характеристик объекта, в него помещенного (его электрического заряда, массы, протекающего тока и т.п.). В то время, как потенциал зависит только от свойств поля.
Потенциал принято графически изображать эквипотенциалами или эквипотенциальными поверхностями, т.е. поверхностями равного потенциала. При перемещении по такой поверхности потенциальная энергия тела остается неизменной, следовательно, силы поля в этом случае работы не совершают. Вспомним определение механической работы: , где a - угол между направлением силы F и перемещения l. Эта работа может быть равной нулю лишь в том случае, если F^l, т.е. угол Ða = 90О. Поскольку напряженность поля совпадает по направлению с силой, перемещение лежит на эквипотенциальной поверхности, сказанное обозначает, что линии напряженности всегда ортогональны эквипотенциальным поверхностям.
Чем ближе друг к другу расположены эквипотенциальные поверхности, тем больше напряженность поля. На рис.15.2.б приведен пример эквипотенциальных поверхностей.
Вспомним связь силы с потенциальной энергией - формулу (11.12). Если левую и правую часть этого равенства разделить на величину той количественной характеристики, которая участвует в создании поля, то получится формула, выражающая связь напряженности поля с его потенциалом:
.
Аналогичным образом из (11.8) получим формулу для связи потенциала поля с его напряженностью:
.
Эти формулы позволяют по заданному в каждой точке потенциалу поля восстановит его напряженность и наоборот.
Обратимся к очень важному в теории поля принципу - принципу суперпозиции. В общем случае, принцип суперпозиции - это допущение, согласно которому результирующий эффект сложного процесса воздействия эквивалентен сумме эффектов от каждого воздействия в отдельности. Разумеется это определение предполагает, что эффекты не влияют друг на друга. С принципом суперпозиции мы сталкивались в школьном курсе механики и электростатики. Если на частицу, или тело действует несколько сил, то их можно заменить одной - векторной суммой всех сил.
Сформулированный принцип не является
фундаментальным, или универсальным.
Он справедлив, если система описывается
линейными уравнениями. К системе,
описываемой нелинейными
Поясним вышесказанное примером. Пусть
в пространстве имеется равновесное
распределение электрических
В общем случае можно утверждать, что принцип суперпозиции справедлив, если наложение полей не приводит к перемещению в пространстве источников этих поле.
Электромагнитное поле в вакууме удовлетворяет принципу суперпозиции. В силу этого принципа электрическое или магнитное поле, создаваемое системой зарядов или токов, равно сумме полей, создаваемых этими зарядами или токами в отдельности. Для электромагнитного поля в веществе, принцип суперпозиции может нарушаться, например, если постоянные, описывающие свойства среды (диэлектрическая или магнитная) зависят от величины поля.
Примером нарушения принципа суперпозиции может служить магнитное поле в ферромагнетике. Другой пример - свет (сильное световое поле) в среде. Такое поле может генерировать в среде за счет нелинейного взаимодействия с ней свет на длине волны в два, три или более раз меньшей. Слабое гравитационное поле с хорошей точностью подчиняется принципу суперпозиции. Сильное же гравитационное поле не подчиняется принципу суперпозиции, поскольку оно описывается нелинейными уравнениями Эйнштейна.
Разделы физики, которые изучают явления, в которых нарушается принцип суперпозиции, обычно называют нелинейными. Например, нелинейная оптика. В дальнейшем ограничимся рассмотрением слабых полей (гравитационных и электромагнитных), к которым принцип суперпозиции применим.
. Поля центральных сил.
В этом разделе, мы рассмотрим так называемые поля центральных сил. Это поля , силы взаимодействия для которых зависят только от расстояния между взаимодействующими телами и направлены вдоль линии взаимодействия. Мы будем рассматривать квазистационарные поля, т.е. такие поля, которые либо не меняются со временем, либо меняются, но медленно по сравнению с рассматриваемыми явлениями. К рассматриваемым поля в первую очередь относятся гравитационные и электростатические поля.
Поведение гравитационных и электростатических полей похоже друг на друга. То объясняется тем, что в основе описания обеих полей лежат схожие законы: çàêîí âñåìèðíîãî òÿãîòåíèÿ Ньютона и закон Кулона. В векторном виде мы записывали их следующим образом:
Fтяг = ( -g) ( M m / r2) (r/r)
Fкул = (1/4pe0 ) (Qq/r2)
(r/r)
Если не считать коэффициентов перед формулами (-g) и (1/4pe0) (которые могут иметь другой вид в других системах единиц), законы похожи. Сила тяготения Fтяг (сила притяжения между двумя телами) прямо пропорциональна массам M и m тел, обратно пропорциональна квадрату расстояния ìåæäó телами r и направлена вдоль линии, соединяющей тела (r/r). Кулоновская сила Fкул (сила взаимодействия между зарядами ) прямо пропорциональна зарядам Q и q, обратно пропорциональна квадрату расстояния ìåæäó зарядами r и направлена вдоль линии, соединяющей заряды (r/r).
В дальнейшем нам будет удобно остановится подробнее на одном виде взаимодействия ( электростатическом или гравитационном), подразумевая, что все наши выводы будут справедливы и для другого взаимодействия (поля).
В электродинамике при описании электрических полей используют другую форму записи закона Кулона. На называется теоремой Остроградского-Гаусса. Рассмотрим ее. Напряженность электрического поля точечного заряда Q на расстоянии r от него определяется из закона Кулона и равна:
E = F/q = (1/4pe0)(Q/r )(r/r) (15.6)
Найдем поток вектора
ФЕ = (4pR2 ) (1/4pe0 ) (Q/R2 ) = Q/ e0 (15.7)
Если вместо сферической, мы возьмем произвольную замкнутую поверхность, через нее будет проходить столько же силовых линий, сколько и через сферу. В силу принципа суперпозиции теорема применима и к произвольному числу зарядов внутри поверхности. Чтобы найти поток вектора напряженности при произвольном числе зарядов внутри поверхности, надо просуммировать заряды внутри ее. Другими словами: Поток вектора напряженности через произвольную поверхность равен алгебраической сумме зарядов внутри этой поверхности, деленной на диэлектрическую проницаемость вакуума.
Теорема Остроградского-Гаусса имеет наглядный физический смысл. Она утверждает, что силовые линии электростатического поля начинаются и заканчиваются на зарядах. Если внутри рассматриваемой поверхности зарядов нет, то число входящих в нее силовых линий равно числу выходящих и суммарный поток вектора напряженности равен нулю.