Физические поля

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 14:23, реферат

Краткое описание

В восьмой главе было введено понятие поля, сформулирована концепция близкодействия, принятая в современной физике, и рассмотрены четыре вида взаимодействия, т.е. четыре вида полей. В настоящем разделе мы рассмотрим, что такое принцип суперпозиции, чем описание поля отличается от описания вещества, какие параметры вводятся для описания всех видов полей.
Согласно концепции близкодействия, взаимодействие между телами на расстоянии осуществляется посредством особого состояния материи - поля. Тела или частицы, участвующие в взаимодействии, создают в окружающем их пространстве особое состояние - поле.

Вложенные файлы: 1 файл

ФИЗИЧЕСКИЕ ПОЛЯ.doc

— 166.00 Кб (Скачать файл)

Эта теорема используется в электростатике для решения многих задач. Рассмотрим, как с ее помощью определить напряженность  электрического поля вблизи равномерно заряженной  поверхности. Пусть у  нас есть бесконечно большая равномерно заряженная плоскость. Если заряды положительны, то силовые линии выходят из плоскости и расположены перпендикулярно ей (см.рис.15.2).

 

 

 

 

 

                  Рис.15.2

 

Обозначим через s=q/s поверхностную плотность заряда, т.е. заряд, приходящийся на единицу площади. Выделим на плоскости окружность Ds и построим на ней как на основании два цилиндра по обе стороны поверхности.  Высота цилиндров равна r. Боковые стенки цилиндров перпендикулярны поверхности и совпадают с линиями напряженности электрического поля. Значит поток вектора напряженности через них равен нулю. Применим теперь к цилиндру теорему Остроградского-Гаусса. Полный поток вектора напряженности электрического поля равен: ФЕ = Q/e0=sDs /e0 . С другой стороны, чтобы найти его, надо просуммировать потоки вектора напряженности через все стенки цилиндра. Черезбоковые стенки он равен нулю. Поток вектора напряженности через торцевые стенки равен:  Е Ds = s Ds/e0 . Отсюда находим, что напряженность поля не зависит от расстояния до поверхности и равна : E = s/e0 .

Эту же задачу можно, в принципе, решить, используя формулу 15.6. Но, для решения  задачи с ее помощью потребовалось  бы применение раздела высшей математики, связанного с векторным анализом и поверхностными интегралами.

Электростатическое и гравитационное поле являются полями центральных сил, т.е. сил, величина которых зависит  только от расстояния между взаимодействующими телами и направлены вдоль линии, соединяющей тела. Такие поля являются полями консервативных сил . Покажем это на примере гравитационного поля вблизи поверхности Земли. Силовые линии гравитационного поля вблизи поверхности Земли параллельны друг другу. Найдем работу, совершаемую при перемещении тела, массой m из точки 1 в точку 2 (см. рис. 15.3).

 

                 Рис.15.3

 

Расстояние между точками будем  считать пренебрежимо малым по сравнению  с расстоянием до центра земли. В  этом случае сила тяготения одинакова  во всех точках траектории ,равна весу тела Р и направлена вертикально  вниз:  F = P =mg = m (g M / R 2 ) e, где R радиус Земли, e -единичный вектор e= -r/r.

Направим  ось координат  OZ вдоль силовых линий гравитационного поля âåртикально вниз. По определению, работа, совершаемая при перемещении тела массой m из точки 1 в точку 2 , ( где точка 1 расположена на высоте H1   , а точка 2 на высоте H2   )равна:

 

A12 =     F dr   =    F dr cos(Fdr) =      F dZ = F(H1-H2)=P(H1-H2)       (15.8).  

 

Работа не зависит от траектории пути, а определяется начальным и  конечным положением тела. Тем самым  мы доказали, что рассматриваемые поля являются полями консервативных сил. Работа этих полей на замкнутой траектории равна нулю.

Для поля консервативных сил можно  ввести потенциальную энергию. В  каждой точке поля консервативных сил  она равна работе, которую нужно  затратить на перемещение тела из бесконечности в данную точку. В случае электрического поля перемещаемым телом является заряд. При описании электрических полей вместо потенциальной энергии точки чаще используют понятие потенциала в точке r : j(r) . Потенциал определяется как отношение потенциальной энергии (Eпот) заряда  q в точке к величине самого заряда:

                      j(r) = Eпот(r) / q =Ar    /q                                           (15.9)

  Из этого определения следует,  что потенциал является скалярной функцией. Причем, у этой функции аргументом служит точка в пространстве, которая может задаваться вектором.

Свяжем между собой потенциалы и работу по перемещению заряда. Пусть мы перемещаем заряд q из  точки 1 в точку 2 в электрическом поле. Работа по перемещению такого заряда равна разности потенциальных энергий поля  в точках  1 и 2:

                        A 12= Eпот(2) - Eпот(1) = [j(2)  - j(1)] q=U q                 (15.10)

 

Здесь разность потенциалов мы обозначили как U , которую обычно называют просто напряжением. С другой стороны, работа по определению равна :

                A 12= Fdr=qEdr =q  Edr=q[j(2)-j(1)]                             (15.11)

 

Òåì ñàìûì ìû ñâÿçàëè напряженность электрического поля с разностью потенциалов.  Величину    Edr называют циркуляцией вектора напряженности электрического поля на участке кривой 1-2. Если заряд перемещается по замкнутой кривой, т.е. вышел из точки 1 и вернулся в точку 1, то работа по его перемещению равна нулю. Электростатическое поле- поле консервативных сил. Но это означает, что циркуляция вектора напряженности электрического поля на замкнутой кривой равна нулю. Тем самым мы доказали еще одну важную теорему электростатики о циркуляции вектора напряженности электрического поля.

В качестве примера рассмотрим потенциал точечного заряда +Q на расстоянии r0 от него. Пусть пробный заряд +q двигается по прямой, проходяшей через заряд Q,  из бесконечности в точку r0.  Работу, затраченную на перемещение заряда можно определить по формуле 15.5  с учетом того, что заряд двигается вдоль силовой линии, т.е. скалярное произведение Fdr =Fdr: A r =   Fdr =  (1/4pe0) Qq   (1/r) dr = (1/4pe0)Qq(1/r), откуда потенциал точечного заряда j(r) =1/4pe0Q /r.

При графическом описании  электрических  полей часто пользуются эквипотенциальными линиями или поверхностями, которые определяют поверхность с одинаковым потенциалом j. Для точечного заряда линии эквипотенциальной поверхности на плоскости - просто концентрические окружности, как это показано на рис.15.1. При движении заряда по эквипотенциальной поверхности работа не совершается, как это следует из формулы 15.11. Для того, чтобы работа при перемещении заряда в электрическом поле равнялась бы нулю, требуется, чтобы заряд двигался перпендикулярно силовым линиям электрического поля (тогда cos(Fdr)=0 и работа равна 0). Т.е. в общем случае линии эквипотенциальной поверхности перпендикулярны в каждой точке линиям напряженности электрического поля.

Предположим, мы сообщили некоторый  заряд проводнику. Что будет происходить? Одноименные заряды будут отталкиваться и стремится расположится на поверхности проводника. Но заряды не могут двигаться бесконечно долго в проводнике, иначе мы получили бы вечный двигатель, т.е. нарушился бы закон сохранения энергии. Заряды расположатся таким образом, чтобы напряженность электрического поля, направленная вдоль каждой точки поверхности по касательной стала бы равной нулю. Линии напряженности электрического поля в каждой точке поверхности будут перпендикулярны ей. Тогда движение зарядов по поверхности прекратится. Такой процесс произойдет очень быстро. Поверхность проводника станет эквипотенциальной, поскольку в каждой точке поверхности линии напряженности электрического поля будут перепендикулярны ей.

 

Вихревые поля.

 

Наряду с описанными выше полями (электростатическими и гравитационными) существует другой вид полей, силовые линии которых нигде не начинаются и нигде не заканчиваются, они замыкаются сами на себя. Такие поля называются вихревыми. Они названы так из-за сходства силовых линий в виде концентрических окружностей с вихрем. Рассмотрим особенности этих полей. Начнем с простейшего - магнитного поля. Стационарное магнитное поле создается движущимися зарядами.

Из школьного курса хорошо известны силовые линии естественных магнитов. Их вид изображен на рис.15.4а. Такой же вид полей можно получить, используя  замкнутый проводник, по которому течет ток. Поле кругового витка с током изображено на рис.15.4б. Силовые лини поля

 

              Рис.15.4

 

образуют замкнутые кривые. Их направление  определяется по правилу правого буравчика. Если ручку буравчика вращать по направлению тока в витке, то острие показывает направление силовых линий. Стационарное магнитное поле создается движущимися зарядами. На рис.15.5 показаны силовые линии бесконечно длинного проводника с током. Они представляют концентрические окружности. Направление силовых линий также можно определить с помощью правила буравчика. Для этого надо направить острие буравчика по направлению тока, тогда направление вращения ручки буравчика совпадет с направлением силовых линий.

 

 

             Рис.15.5

 

Правило буравчика - мнемоническое  правило, позволяющее просто определять направление силовых линий магнитного поля. Существуют строгие законы, позволяющие  определять величину и направление  силовых линий произвольного по форме проводника с током.

 Напряженность магнитного поля  определяется законом Био-Саварра-Лапласа.  Мы не будем рассматривать  в явном виде этот закон.  В принципе, с его помощью можно  рассчитать напряженность магнитного  поля, создаваемую любым проводником с током. Так напряженность магнитного поля бесконечно длинного проводника с током на расстоянии r от него равна: H=I/2pr.

 На достаточно удаленном  расстоянии от  проводника с  током магнитное поле можно  считать однородным. Т.е. силовые линии такого поля расположены параллельно друг от друга. На  проводник с током, помещенный в однородное магнитное поле действует сила. Величина силы определяется по закону Ампера. Для участка проводника с током, длиной L  его можно записать в векторном виде  в системе единиц СИ как:

 

           F = m0 I [ H L ]                  (15.12)

 

Çäåñü m0 - постоянная , обусловленная выбором системы единиц  (СИ), L -проводник с током I , который задается в векторном виде, так как имеет направление в пространстве. Его направление совпадает с направлением движения тока, т.е. положительных зарядов.

Из 15.12 следует, что на проводник  с током в однородном магнитном  поле действует сила, направленная перпендикулярно вектору напряженности  магнитного поля H и направлению движения тока (проводника с током L ). В этом заключается принципиальное отличие силового воздействия вихревого магнитного поля на пробный элемент от поля консервативных сил.

Вихревыми бывают не только магнитные, но и электрические поля. Действительно, возьмем проводник с током в виде кольца и поставим внутрь него батарейку. Заряды (носителями зарядов в проводниках являются электроны) будут двигаться по кольцу, создавая ток. Величина тока I определяется известным вам законом Ома:

 

   I = E / (rе +R)                          (15.13),

 

где Е - электродвижущая сила (ЭДС) батареи, R и rе - сопротивление проводника и внутренне сопротивление источника ЭДС.

Рассмотрим, что происходит в проводнике. Как мы знаем, электроны двигаются  вдоль силовых линий электрического поля.  В рассматриваемом нами проводнике электроны двигаются по замкнутой кривой, образуемой проводником. Значит в проводнике реализуется такое электрическое поле, которое заставляет двигаться электроны по замкнутой кривой. 

Следовательно, и силовые линии электрического поля тоже представляют из себя замкнутые кривые. Т.е. электрическое поле в проводнике также является вихревым полем.  Электростатическое поле способно перемещать заряды, но только до того момента, пока перераспределение зарядов не скомпенсирует поле. После этого заряды будут оставаться неподвижными. Поле в проводнике с током стационарно и вызывает стационарное движение зарядов. Значит это не электростатические поля, а какие-то другие. Такие поля, способные создавать стационарное движение зарядов, в отличие от электростатических, обычно называют электрическими полями, создаваемыми  сторонними силами. Сторонними, потому, что электрические заряды сами не способны создать такие поля. Соответственно, силы, вызывающие стационарное движение зарядов - сторонними силами. Электрическое поле сторонних сил совершает работу при передвижении зарядов по замкнутому контуру. Она равна произведению тока в контуре на ЭДС и на время, в течении которого шел ток: А=IEDt.

Электрические поля сторонних сил  могу быть созданы за счет различных видов энергий. Механической, тепловой , химической , ядерной и других. Механическая энергия, вращающая генераторы с током превращается в электрическую. Батарейки или аккумуляторы работают за счет химических реакций. Ядерные батарейки работают за счет ядерной энергии, высвобождаемой при распаде или превращении одних ядер в другие.

Возвратимся теперь назад и дадим  определение ЭДС. ЭДС , действующая  в контуре с током, численно равна  работе А, совершаемой при перемещении  единичного заряда q0 по контуру :

                  E=A/q0                          (5.14)

 

Ìîæíî äàòü åùå îäíî, определение ЭДС. Электрическое поле, создаваемое сторонними силами, можно обозначить как Ест. Работа, совершаемая при перемещении заряда по контуру А равна:

A=     Fdr =      q0 Eст dr =  q0   Eст dr.

Здесь интегрирование берется по контуру, по которому течет ток.

В соответствии с определением ЭДС (15.14.), ЭДС Е   равна:

                             E =  A/q0 =      Ест dr .

Другими словами, ЭДС равна  циркуляции вектора напряженности электрического поля сторонних сил. В отличие от электростатического поля, она не равна нулю на замкнутом контуре, а равна ЭДС, действующей на данном контуре. Поскольку циркуляция вектора напряженности электростатического поля равна нулю, добавления 0 в дальнейшем мы не бу

   Мы увидели, что работа, совершаемая электрическим полем  не равна нулю на замкнутом  контуре, если в нем действуют  сторонние силы, задающие  ЭДС.  Таким образом , электрические  поля сторонних сил, которые  являются вихревыми полями -  неконсервативные поля.

Информация о работе Физические поля