Автор работы: Пользователь скрыл имя, 21 Сентября 2014 в 15:58, реферат
Краткое описание
Я выбрала эту тему, так как мне хотелось разобраться в очень сложном вопросе: нужна ли нам генная инженерия? Конечно,порить на эту тему можно до бесконечности. Но никто не в силах остановить научно-технический прогресс. Потому что его наличие обусловлено самой человеческой природой. Человек так устроен, что "должен" всё время что-то изобретать, создавать, строить, изменять. И, конечно же, хочется подметить, что ,если в нашем мире что-то изобрели, то это будут преобразовывать, независимо от чьего-либо мнения.
Подобрав набор таких ферментов,
можно без труда расчленять молекулу на
требуемые участки. Затем необходимо их
соединить, но уже по новому. Тут помогает
природное свойство генетического материала
воссоединяться друг с другом. Помощь
в этом оказывают также ферменты лигазы,
задача которых заключается именно в соединении
двух молекул с образованием новой химической
связи.
Непохожий ни на что гибрид
создан. Представляет он из себя молекулу
ДНК, несущую новую генетическую информации.
Такое образование в генной инженерии
называют вектором. Его главная задача
– передача новой программы воспроизводства
намеченному для этой цели живому организму.
Но ведь последний может её проигнорировать,
отторгнуть и руководствоваться только
родными генетическими программами.
Такое невозможно, благодаря
явлению, которое носит название трансформация
у бактерий и трансфекция у человека и
животных. Суть его заключается в том,
что если клетка организма поглотила свободную
молекулу ДНК из окружающей среды, то она
всегда встраивает её в геном. Это влечёт
за собой появление у такой клетки новых
наследственных признаков, запрограммированных
в поглощённую ДНК.
Поэтому, чтобы новая генетическая
программа начала работать, необходимо
только одно, - чтобы она оказалась в нужной
клетке. Это сделать не просто, так как
такое сложное образование, как клетка,
имеет множество защитных механизмов,
препятствующих проникновению в неё чужеродных
объектов.
Любые преграды можно обойти.
Для начала маленькие – к примеру, введение
чужеродных генов в бактерии. Здесь, в
качестве вектора, вполне можно использовать
плазмиду – кольцевую молекула ДНК малых
размеров, располагающуюся в клетках вне
хромосом и несущую дополнительные половые
признаки. Бактерии постоянно обмениваются
плазмидами, поэтому не составляет никакого
труда перепрограммировать указанную
молекулу и направить в клетку.
Значительно более трудно ввести
готовый ген в наследственный аппарат
клеток растений и животных. Здесь на помощь
приходят вирусы – генетические элементы,
одетые в белковую оболочку и способные
переходить из одной клетки в другую. Для
такой работы прекрасно подходят молекулы
ДНК вирусов - фаги. Их «переделывают»
под нужные параметры и включают в генетический
аппарат животного или растительного
организма.
Всё, дело сделано. Внедрённый
генетический код начинает работать. Иногда
бывают сбои, если часть генов новой ДНК
окажутся «молчащими». Таких много в каждом
организме. У одних живых существ они прекрасно
функционируют, у других же не проявляют
себя никак. Видимо прекращают свою деятельность
при утере той или иной особью каких-то
качеств в процессе эволюции.
Накладки и недоработки учитываются
и тщательно анализируются. Непрерывно
идут работы, изучающие различные комбинации
генов: удаление части их из молекулы или
наоборот - добавление составляющих, совсем
не свойственных данному живому организму.
Рассматриваются вопросы корректировки
механизмов, отвечающих за процесс преобразования
наследственной информации ДНК в такой
функциональный продукт, как РНК или белок.
Всё это обеспечивает высокую эффективность
и качество конечных результатов по генетической
модернизации окружающего мира.
В наши дни успехи и достижения
видны невооружённым глазом. Если рассмотреть
такую сферу человеческой деятельности,
как сельское хозяйство, то здесь генная
инженерия добилась самых впечатляющих
результатов.
С начала 80-х годов получено
множество геномодифицированных сортов
зерновых культур. На конец первого десятилетия
XXI века ими засеяно 120 млн. га. земельных
угодий по всему миру. Отмечен высочайший
уровень урожайности, его потрясающая
устойчивость к неблагоприятным климатическим
условиям и полное отсутствие паразитов,
пожирающих необходимые для людей злаки.
Выведены невиданные раньше
сорта картофеля, кукурузы, сои, риса, рапса,
огурцов. Количество видов растений, к
которым успешно применены методы генной
инженерии, превышает цифру 50. Трансгенные
плоды имеют более длительный срок созревания,
чем обычные культуры. Этот фактор прекрасно
сказывается при транспортировке, когда
не надо бояться, что продукт перезреет.
Отпадает надобность в селекции,
с её ограниченными возможностями получения
гибридов только от одних и тех же организмов.
Генная инженерия может скрещивать помидоры
с картошкой, огурцы с луком, виноград
с арбузами – возможности здесь просто
потрясающие. Размеры и аппетитный свежий
вид полученного продукта могут приятно
удивить любого.
Скоро прикажут долго жить химические
средства борьбы с вредными насекомыми.
Слова инсектициды, акарициды, пестициды
будут надёжно забыты, так как внедрённые
в растительную клетку овоща, фрукта или
зерновой культуры молекулы ДНК, определённых
видов бактерий, уничтожат и колорадского
жука, и хлопковую совку, и листовёртку,
и многих-многих других вредителей сельскохозяйственных
угодий. Это сэкономит огромные средства
на опыление полей, резко снизит другие
затраты и соответственно понизит себестоимость
конечного продукта.
Животноводство также находится
в зоне интересов генной инженерии. Исследования
по созданию трансгенных овец, свиней,
коров, кроликов, уток, гусей, кур считаются
в наши дни приоритетными. Здесь большое
внимание уделяется именно животным, которые
могли бы синтезировать лекарственные
препараты: инсулин, гормоны, интерферон,
аминокислоты.
Так генетически модифицированные
коровы и козы могли бы давать молоко,
в котором содержались бы необходимые
составляющие для лечения такого страшного
заболевания, как гемофилия. Инсулин, антитрипсин
тоже можно получать из питательной белой
жидкости. Не надо забывать и о стоимости.
Создание такого типа биологических лекарств
обойдётся раз в 20 дешевле, чем производство
соответствующих медикаментов при помощи
традиционной химии.
Успешно ведутся работы по регулированию
обмена веществ, от которого напрямую
зависит продуктивность. В овцеводстве
вполне реально создать животных, предрасположенных
к быстрому росту шерсти. Массовое выведение
более крупных пород свиней – дело ближайших
лет. То же касается и домашней птицы.
Не надо сбрасывать со счетов
и борьбу с опасными вирусами. Генетически
устойчивая к различным заразным заболеваниям
живность уже существует и очень комфортно
чувствует себя в окружающей среде. К таковым
можно отнести кроликов, которые стали
забывать, что такое лейкоз.
Но самое наверное перспективное
в генной инженерии – это клонирование
животных. Под этим термином понимается
(в узком смысле этого слова) копирование
клеток, генов, антител и многоклеточных
организмов в лабораторных условиях. Такие
экземпляры генетически одинаковы. Наследственная
изменчивость возможна только в случае
случайных мутаций или, если создана искусственно.
Благодаря клонированию можно воспроизводить
очень ценные с той или иной точки зрения
особи. Это могут быть и представители
пород крупного рогатого скота, и овец,
и свиней, и скаковых лошадей, и редких
пород собак. Примером такого процесса
может служить овечка Долли, успешно клонированная
из клетки другого взрослого существа.
Она появилась на свет в Великобритании
5 июля 1996 года, прожила шесть с половиной
лет и умерла 14 февраля 2003 года.
В целом можно считать опыт
с овцой успешным. А раз так, то уже не раз
задумывались и о клонировании человека.
Но тут пока нет позитивных сдвигов, так
как технология до конца не отработана.
За основу пока берётся метод «переноса
ядра». Именно он и был проверен экспериментально
при воспроизводстве клона овцы.
Суть данного метода заключается
в пересадке ядра яйцеклетки. Новое ядро
содержит ДНК именно того организма, который
необходимо клонировать. После митотических
(деление с сохранением числа хромосом)
делений, образуется бластоциста (ранняя
стадия эмбриона – состоит из 100 клеток)
с ДНК почти идентичной запрограмированному
организму. Именно её дальнейшее развитие
и обеспечивает появление на свет клонированного
существа.
Этот метод имеет ряд недостатков,
поэтому поиски более совершенных способов
создания абсолютно идентичных биологических
образований идут полным ходом во многих
странах мира. Люди науки надеются, что
уже в недалёком будущем процесс клонирования
станет обычным, рядовым явлением, каковым
сейчас является операция аппендицита.
Судя по тому, каких успехов
добилась генная инженерия за сравнительно
небольшой период времени - это не вызывает
никакого сомнения. Наоборот, возникает
непреклонная убеждённость, что в ближайшие
двадцать лет мир изменится до неузнаваемости.
Уже сейчас созданы совершеннейшие сложнейшие
технологии, кардинально преобразующие
жизнь человеческой цивилизации. Гордость,
восхищение, восторг – только такими синонимами
можно выразить всю гамму чувств.
Минусы генной инженерии
Но…У этой медали есть и оборотная
сторона. Эта сторона разительно отличается
от блестящего фасада, созданного поклонниками
генетической революции. Здесь нет победных
реляций и аплодисментов, а лица людей
отнюдь не светятся счастьем. Суровая
проза жизни уже сейчас показывает во
всей красе неприглядные последствия
воздействия трансгенных организмов на
сбалансированный природой органический
мир голубой планеты.
Начать можно с того самого
колорадского жука, который, в своё время,
так любил лакомиться картошкой. Введённый
в её клубни модифицированный ген навсегда
отбил охоту у бедного насекомого зариться
на чужое добро. Жук просто стал вымирать
в массовых масштабах, а урожайность полезного
корнеплода расти.
И что же, если кому-то это и
принесло счастье, то только тем, кто эту
картошку выращивает и продаёт, и то при
условии, что они её сами не едят. А дело
всё в том, что таким способом защищённые
клубни дали попробовать лабораторным
мышам. Через небольшой период времени
у них развился рак пищевода. Несчастные
грызуны стали умирать ничуть не хуже,
чем колорадский жук.
Есть вполне обоснованное подозрение,
что эту картошку едят и люди. У них конечно
организм побольше, покрепче, они не какие-то
там лабораторные мыши, но чем чёрт не
шутит. Последствия могут отразиться не
обязательно на тех, кто эти клубни ест,
а скажем, на только что родившемся ребёнке.
Разве мало сейчас случаев,
когда рождаются дети с шестью пальцами,
со сросшимися ногами, с полным отсутствием
гениталий или без глаз и ушей. Это говорит
о том, что надёжный генетический аппарат,
созданный природой, по каким-то непонятным
причинам дал сбой. Винить во всём картошку
естественно нельзя, хотя бы потому, что
эта сельскохозяйственная культура только
вершина айсберга.
Никогда не надо забывать, что
генная инженерия – абсолютно новая технология.
Необдуманное и неумелое использование
этого инструмента не просто разрушает,
а вносит хаос в созданные природой генетические
барьеры между людьми, животными, растениями
и бактериями. Сейчас все кому не лень
объединяют гены, не состоящие даже отдалённо
в родстве, навсегда и окончательно изменяя
их генетический код.
Впервые в истории цивилизации
человек стал конструктором и архитектором
органической жизни. Биоинженеры уже в
ближайшие годы могут создать десятки
тысяч новых организмов. Только представив
такое, волосы на голове встают от ужаса.
Последствия могут быть страшными, так
как никто не имеет даже элементарного
представления к чему приведут подобные
трансформации.
Нельзя сказать, что всем наплевать
на конечные результаты столь смелых и
дерзких преобразований в такой тонкой
области, как генетика. Равнодушных здесь
нет. Работы, направленные на прогнозирование
здоровья человека, животных, на состояние
растительного мира, ведутся, но их ничтожно
мало, к тому же выводы невозможно сделать
за один день, здесь нужен очень длительный
период времени.
Страшные смертельные мутации
могут проявиться только во втором или
третьем поколении. Но даже при тщательном
анализе и прогнозировании последствий
от вновь изобретённого трансгенного
продукта, никто и никогда на все 100% не
сможет гарантировать его полную безопасность.
Окончательное заключение могут дать
результаты экспериментов, которые нужно
проводить десятки лет. Ждать столько
никто не будет.
Генная инженерия может нанести
смертельный вред сельскому хозяйству,
хотя бы потому, что генетически изменённые
растения, устойчивые перед вирусами,
могут спровоцировать мутацию этих вирусов.
Те станут более опасными, примут совсем
другие формы и начнут атаковать другие
виды растений.
Уже доказано, что некоторые
трансгенные растения могут выделять
токсины и другие вредные вещества, способные
нанести вред птицам, животным, а также
насекомым. Те же пчёлы, «наевшись» таких
геномодифицированных выделений, просто
погибнут, а их мёд будет медленно действующим
ядом.
Генетически изменённые сельскохозяйственные
культуры и животные уже провоцируют развитие
токсических и аллергических реакций
у людей. Употребление таких продуктов
может привести к фатальным последствиям.
Впрочем подобное уже случалось, когда
генетически созданные пищевые добавки
убивали людей, вызывая смертельные заболевания
крови.
Немало учёных считает, что
технологии генной инженерии страшнее
ядерных технологий. Масштаб бедствий
может быть на порядки выше, а нравственная
деградация людей, а также морально-этические
нормы вообще не поддаются никаким измерениям.
Последнее во многом связывают
с клонированием человека. Здесь существуют
две абсолютно полярные точки зрения.
Одни придерживаются того мнения, что
создание идеально похожих людей аморально
по сути. Напрочь также отрицают получение
эмбрионных стволовых клеток, считая это
убийством зарождающейся жизни.