Автор работы: Пользователь скрыл имя, 29 Октября 2012 в 18:57, контрольная работа
Индукция (лат. inductio — наведение) — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.
Вопрос 12. Индуктивные и дедуктивные умозаключения
1. Индуктивное умозаключение
Индукция (лат. inductio —
наведение) — процесс логического
вывода на основе перехода от частного
положения к общему. Индуктивное
умозаключение связывает
Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе.
Виды индукции
Различают двоякую индукцию:
В полной индукции мы заключаем от полного перечисления видов известного рода ко всему роду; очевидно, что при подобном способе умозаключения мы получаем вполне достоверное заключение, которое в то же время в известном отношении расширяет наше познание; этот способ умозаключения не может вызвать никаких сомнений. Отождествив предмет логической группы с предметами частных суждений, мы получим право перенести определение на всю группу.
Схема полной индукции:
Множество А состоит из элементов: А1, А2, А3, …, Аn.
______________________________
Следовательно, все элементы множества А имеют признак В.
Неполная индукция
Метод обобщения признаков некоторых элементов для всего множества, в который они входят. Неполная индукция не является доказательной с точки зрения формальной логики, может привести к ошибочным заключениям. Вместе с тем, неполная индукция является основным способом получения новых знаний. Доказательная сила неполной индукции ограничена, заключение носит вероятностный характер, требует приведения дополнительного доказательства.
Схема неполной индукции:
Множество А состоит из элементов: А1, А2, А3, …, Аn.
______________________________
Следовательно, вероятно, Аk+1 и остальные элементы множества А имеют признак В.
Пример ошибочного результата:
______________________________
Следовательно, в каждой латиноамериканской стране говорят на испанском языке.
Неполная И. по построению напоминает третью фигуру силлогизма, отличаясь от неё, однако, тем, что И. стремится к общим заключениям, в то время как третья фигура дозволяет лишь частные.
2. Дедуктивное умозаключение
Дедукцию (в переводе с лат. deductio – выведение) часто характеризуют как умозаключение от общего к частному. Эта не вполне верная характеристика дедуктивных умозаключений связана с их противопоставлением индуктивным умозаключениям. Более верно следующее определение:
дедуктивные умозаключения – это такие умозаключения, которые при условии истинности посылок должны гарантировать истинность заключения.
Посылки – это те суждения, из которых выводится последнее суждение, называемое заключением; заключение – это суждение, которое выводится из предыдущих суждений (посылок).
Истинность заключения при истинности
посылок в дедуктивных
В силу того, что в дедуктивных умозаключениях заключение логически следует из посылок, они представляют собой самый надёжный способ доказательства. Однако надёжность дедуктивных умозаключений существует в ущерб их информативности, то есть они не дают новой информации о мире. В заключениях этих умозаключений содержится та же самая информация, что и в посылках, и нет никакой новой информации. Поэтому выводы данного типа достоверны: если истинна информация в посылках, то истинна и та её часть, которая содержится (выводится) в заключении. Действительно, рассмотрим такие дедуктивные умозаключения, как простой категорический силлогизм:
Все люди смертны. Ты – человек. Следовательно, ты смертен.
или условно-категорическое умозаключение:
Если на улице дождь, то на улице лужи.
На улице дождь. Следовательно, на улице лужи.
Ни в одном, ни в другом умозаключении суждения, являющиеся заключениями дедукции (расположены под чертой), не представляют интереса с точки зрения получения новой информации.
Тем не менее, дедукция даёт новое знание, но в том смысле, что она изменяет познавательный статус суждений, их место в системе наших знаний о мире, то есть, обосновывая мнения, догадки, доказывая гипотезы, предположения и т.п., превращает их в теоремы, законы, убеждения и т.п.
Типы дедуктивных умозаключений
Дедуктивными являются следующие типы умозаключений:
Также дедуктивные умозаключения бывают непосредственными.
Они делаются из одной посылки и называются превращением, обращением и противопоставлением предикату, отдельно рассматриваются умозаключения по логическому квадрату. Выводятся такие умозаключения из категорических суждений.
Рассмотрим эти умозаключения. Превращение имеет схему:
S есть Р
S не есть не-Р.
По этой схеме видно, что посылка только одна. Это категорическое суждение. Превращение характеризуется тем, что при изменении качества посылки в процессе вывода не происходит изменения ее количества, а предикат следствия отрицает предикат посылки. Есть два способа превращения – двойное отрицание и замена отрицания в предикате отрицанием в связке. Первый случай отражен на схеме, приведенной выше. Во втором превращение отражается на схеме как S есть не-Р – S не есть Р.
В зависимости от типа суждения превращение можно выразить следующим образом.
Все S есть Р – Ни одно S не есть не-Р. Ни одно S не есть Р – Все S есть не-Р. Некоторые S есть Р – Некоторые S не есть не-Р. Некоторые S не есть Р – Некоторые S есть не-Р. Обращение – это умозаключение, в котором при перемене мест субъекта и предиката качество посылки не меняется.
То есть в процессе вывода субъект встает на место предиката, а предикат – на место субъекта. Соответственно, схему обращения можно изобразить как S есть Р – Р есть S.
Обращение бывает с ограничением и без ограничения (его еще называют простое или чистое). Это разделение основывается на количественном показателе суждения (имеется в виду равенство или неравенство объемов S и Р). Это выражается в том, изменилось ли кванторное слово или нет и распределены ли субъект и предикат. Если такое изменение происходит, то имеет место обращение с ограничением. В обратном случае можно говорить о чистом обращении. Напомним, что кванторное слово – это слово – показатель количества. Так, слова «все», «некоторые», «ни один» и другие являются кванторными словами.
Противопоставление предикату характеризуется тем, что связка в следствии меняется на противоположную, субъект противоречит предикату посылки, а предикат эквивалентен субъекту посылки.
Необходимо сказать, что непосредственное умозаключение с противопоставлением предикату невозможно вывести из частноутвердительных суждений.
Приведем схемы
Некоторые S не есть Р – Некоторые не-Р есть S. Ни одно S не есть Р – Некоторые не-Р есть S. Все S есть Р – Ни одно Р не есть S.
Объединяя сказанное, можно
рассматривать
Литература