Парадокс близнецов

Автор работы: Пользователь скрыл имя, 13 Декабря 2012 в 16:26, реферат

Краткое описание

Парадокс близнецов — мысленный эксперимент, при помощи которого пытаются «доказать» противоречивость специальной теории относительности. Согласно СТО, с точки зрения «неподвижных» наблюдателей все процессы у двигающихся объектов замедляются. С другой стороны, принцип относительности декларирует равноправие инерциальных систем отсчёта. На основании этого строится рассуждение, приводящее к кажущемуся противоречию. Для наглядности рассматривается история двух братьев-близнецов.

Вложенные файлы: 1 файл

Парадокс близнецов.docx

— 54.29 Кб (Скачать файл)

    Парадокс  близнецов — мысленный эксперимент, при помощи которого пытаются «доказать» противоречивость специальной теории относительности. Согласно СТО, с точки зрения «неподвижных» наблюдателей все процессы у двигающихся объектов замедляются. С другой стороны, принцип относительности декларирует равноправие инерциальных систем отсчёта. На основании этого строится рассуждение, приводящее к кажущемуся противоречию. Для наглядности рассматривается история двух братьев-близнецов. Один из них (далее путешественник) отправляется в космический полёт, второй (далее домосед) — остаётся на Земле. Чаще всего «парадокс» формулируется следующим образом:

 

    Формулировка I. С точки зрения домоседа часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа. С другой стороны, относительно путешественника двигалась Земля, поэтому отстать должны часы домоседа. На самом деле братья равноправны, следовательно, после возвращения их часы должны показывать одно время.

   

Тем не менее, согласно СТО отставшими окажутся часы путешественника. В таком нарушении  видимой симметричности братьев и усматривается противоречие.

 

История

    Эффект релятивистского замедления времени был сформулирован Альбертом Эйнштейном в его работе 1905 года в виде следующей теоремы:

    «Если в точке А находятся двое синхронно идущих часов и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А (на что потребуется, скажем, t сек), то эти часы по прибытии в А будут отставать по сравнению с часами, остававшимися неподвижными…»

  

    В форме парадокса этот эффект сформулировал в 1911 году Поль Ланжевен. Придание парадоксу наглядной истории космического путешествия сделало его популярным, в том числе и в ненаучных кругах. Сам Ланжевен считал, что объяснение парадокса связано с ускоренным движением путешественника, которое необходимо для его возвращения на Землю.

    Следующим анализ парадокса предпринял Макс фон Лауэ в 1913 году. С его точки зрения важны не этапы ускорения путешественника, а сам факт смены им инерциальной системы отсчёта при возвращении на Землю.

    После создания Общей теории относительности Альберт Эйнштейн в 1918 году объяснил парадокс при помощи факта влияния гравитационного поля на ход времени.

    Затем, в 1921 году простое объяснение, основанное на инвариантности собственного времени, предложил Вольфганг Паули.

    Некоторое время «парадокс близнецов» почти не привлекал к себе внимания. В 1956—1959 годах Герберт Дингл выступил с рядом статей, в которых утверждалось, что известные объяснения «парадокса» неверны. Несмотря на ошибочность аргументации Дингла, его работы вызвали многочисленные дискуссии в научных и научно-популярных журналах. В результате появился ряд книг, посвящённых этой теме. Из русскоязычных источников стоит отметить книги, а также статью.

    Большинство исследователей не считают «парадокс близнецов» демонстрацией противоречия теории относительности, хотя история появления тех или иных объяснений «парадокса» и придания ему новых форм не прекращается до настоящего времени.

 

Классификация объяснений парадокса

    Объяснить парадокс, подобный «парадоксу близнецов», можно при помощи двух подходов:

1) Выявить  происхождение логической ошибки  в рассуждениях, которые привели  к противоречию;

2) Провести  детальные вычисления величины  эффекта замедления времени с  позиции каждого из братьев.

    Первый подход зависит от деталей формулировки парадокса. В разделах «Простейшие объяснения» и «Физическая причина парадокса» будут приведены различные версии «парадокса» и даны объяснения того, почему противоречия на самом деле не возникает.

    В рамках второго подхода расчёты показаний часов каждого из братьев проводятся как с точки зрения домоседа (что обычно не представляет труда), так и с точки зрения путешественника. Так как последний менял свою систему отсчёта, возможны различные варианты учёта этого факта. Их условно можно разделить на две большие группы.

    К первой группе относятся вычисления на основе специальной теории относительности в рамках инерциальных систем отсчёта. В этом случае этапы ускоренного движения считаются пренебрежимо малыми по сравнению с общим временем полёта. Иногда вводится третья инерциальная система отсчёта, движущаяся навстречу путешественнику, при помощи которой показания его часов «передаются» брату-домоседу. В разделе «Обмен сигналами» будет приведен простейший расчёт, основанный на эффекте Доплера.

    Ко второй группе относятся вычисления, учитывающие детали ускоренного движения. В свою очередь, они делятся по признаку использования или неиспользования в них теории гравитации Эйнштейна (ОТО). Расчёты с использованием ОТО основаны на введении эффективного гравитационного поля, эквивалентного ускорению системы, и учёте изменения в нём темпа хода времени. Во втором способе неинерциальные системы отсчёта описываются в плоском пространстве-времени и понятие гравитационного поля не привлекается. Основные идеи этой группы расчётов будут представлены в разделе «Неинерциальные системы отсчёта».

 

Простейшие  объяснения

    Благодаря своей продолжительной истории парадокс близнецов существует в разнообразных формулировках. Чаще всего тем или иным методом демонстрируется симметричность братьев, из которой должно было бы следовать противоречие с выводом СТО о том, что отстанут часы путешественника. Исходная версия парадокса (Формулировка I) не уточняет характера движения путешественника. Поэтому для неё справедливо следующее простое объяснение (на качественном уровне):

  

     Объяснение I. Братья не являются равноправными, так как один из них (путешественник) испытывал этапы ускоренного движения, необходимые для его возвращения на Землю.

  

 При этом, чем короче момент ускорения, тем оно больше, и как следствие больше разница в скорости часов на Земле и космического корабля, если он удалён от Земли в момент изменения скорости. Поэтому ускорением никогда нельзя пренебречь.

    Конечно, сама по себе констатация несимметричности братьев не объясняет, почему замедлиться должны часы именно у путешественника, а не у домоседа. Кроме этого, часто возникает непонимание:

 

    «Почему нарушение равноправия братьев в течение столь короткого времени (остановка путешественника) приводит к такому разительному нарушению симметрии?»

 

    Чтобы глубже понять причины несимметричности и следствия, к которым они приводят, необходимо ещё раз выделить ключевые посылки, явно или неявно присутствующие в любой формулировке парадокса. Для этого будем считать, что вдоль траектории движения путешественника в «неподвижной» системе отсчёта, связанной с домоседом, расположены синхронно идущие (в этой системе) часы. Тогда возможна следующая цепочка рассуждений, как бы «доказывающих» противоречивость выводов СТО:

1.Путешественник, пролетая мимо любых часов, неподвижных в системе домоседа, наблюдает их замедленный ход.

2.Более медленный темп хода часов означает, что их накопленные показания отстанут от показаний часов путешественника, и при длительном полёте — сколь угодно сильно.

3.Быстро остановившись, путешественник по-прежнему должен наблюдать отставание часов, расположенных в «точке остановки».

4.Все часы в «неподвижной» системе идут синхронно, поэтому отстанут и часы брата на Земле, что противоречит выводу СТО.

    Итак, почему путешественник на самом деле будет наблюдать отставание своих часов от часов «неподвижной» системы, несмотря на то, что все такие часы с его точки зрения идут медленнее? Наиболее простым объяснением в рамках СТО является то, что синхронизовать все часы в двух инерциальных системах отсчёта невозможно. Рассмотрим это объяснение подробнее.

 

Геометрическая  интерпретация

Иллюстрация парадокса близнецов на диаграмме  Минковского.

 

В пространстве Минковского мировая линия покоящегося (или двигающегося равномерно и прямолинейно) наблюдателя является отрезком прямой. Мировая линия путешественника, улетевшего с Земли и возвратившегося к ней, прямой не является (в простейшем случае мгновенного изменения скорости на противоположную в точке поворота она является ломаной, а при прохождении части пути с постоянным ускорением соответствующий участок линии будет дугой гиперболы). Так же как в обычной геометрии из всех линий, соединяющих две точки, самой короткой является прямая, так же и в пространстве Минковского из всех мировых линий, соединяющих две точки, самой длинной (а не самой короткой в силу псевдоевклидовости пространства

времени) является отрезок прямой.

    Поскольку длина мировой линии наблюдателя, переместившегося в пространстве Минковского из точки a в точку w, с точностью до множителя c равна времени, которое было затрачено на это перемещение в его собственной системе отсчёта, мы имеем, что из всех наблюдателей, стартовавших в точке a и финишировавших в точке w, в системе отсчёта того наблюдателя, который покоился (или двигался равномерно и прямолинейно, если пространственные координаты точек a и w не совпадают), пройдёт наибольшее время.

 

Выводы

 

    Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет. Кроме этого, важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

    Расчёт величины замедления времени с позиции каждого брата может быть выполнен как в рамках элементарных вычислений в СТО, так и при помощи анализа неинерциальных систем отсчёта. Все эти вычисления согласуются друг с другом и показывают, что путешественник окажется моложе своего брата-домоседа.

    Парадоксом близнецов часто также называют сам вывод теории относительности о том, что один из близнецов состарится сильнее другого. Хотя такая ситуация и необычна, в ней нет внутреннего противоречия. Многочисленные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода макроскопических часов при их движении подтверждают теорию относительности. Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

 

 

 

 

 

 

Под релятивистским замедлением времени обычно подразумевают кинематический эффект специальной теории относительности, заключающийся в том, что в движущемся теле все физические процессы проходят медленнее, чем следовало бы для неподвижного тела по отсчётам времени неподвижной (лабораторной) системы отсчёта.


Информация о работе Парадокс близнецов