Автор работы: Пользователь скрыл имя, 11 Мая 2014 в 12:16, лекция
Настоящая работа посвящена рассмотрению методов количественного анализа операций с долговыми бумагами, приносящими фиксированный доход – облигациями, депозитными сертификатами, векселями и др. Термин "фиксированный доход" здесь призван подчеркнуть тот факт, что подобные ценные бумаги являются обязательствами выплатить заранее известные суммы в установленные сроки.
Проведение такого анализа требует глубокого понимания лежащих в его основе теоретических концепций, а также практического овладения основными методами финансовых расчетов.
ПРЕДИСЛОВИЕ 4
Глава 1. Фактор времени и оценка потоков платежей 6
1.1 Временная ценность денег 6
1.2 Методы учета фактора времени в финансовых операциях 7
1.3 Оценка потоков платежей 9
1.3.1 Финансовые операции с элементарными потоками платежей 9
Будущая величина элементарного потока платежей 10
Современная величина элементарного потока платежей 12
Исчисление процентной ставки и продолжительности операции 13
Автоматизация анализа элементарных потоков платежей 13
1.3.2 Денежные потоки в виде серии равных платежей (аннуитеты) 20
Будущая стоимость простого (обыкновенного) аннуитета 21
Текущая (современная) стоимость простого аннуитета 22
Исчисление суммы платежа, процентной ставки и числа периодов 23
Автоматизация исчисления характеристик аннуитетов 24
1.3.3 Денежные потоки в виде серии платежей произвольной величины 26
Глава 2. Анализ долгосрочных бумаг с фиксированным доходом 29
2.1 Виды облигаций и их основные характеристики 29
2.2 Методы оценки облигаций с периодическим доходом 32
2.2.1 Доходность операций с купонными облигациями 33
Накопленный купонный доход – НКД 33
Текущая доходность (current yield – Y) 35
Доходность к погашению (yield to maturity – YTM) 36
2.2.2 Определение стоимости облигаций с фиксированным купоном 38
2.2.3 Средневзвешенная продолжительность платежей (дюрация) 43
2.2.4 Автоматизация анализа купонных облигаций 50
Функции для определения характеристик купонов 52
Функции для определения дюрации 54
Функции для определения курсовой цены и доходности облигации 54
2.3 Оценка бескупонных облигаций (облигаций с нулевым купоном) 54
Доходность долгосрочных бескупонных облигаций 54
Оценка стоимости бескупонных облигаций 54
2.4 Бессрочные облигации 54
Доходность бессрочных облигаций 54
Оценка стоимости бессрочных облигаций 54
2.5 Ценные бумаги с выплатой процентов в момент погашения 54
Анализ доходности долгосрочных сертификатов 54
Оценка стоимости долгосрочных сертификатов 54
Автоматизация анализа долгосрочных сертификатов 54
Глава 3. Краткосрочные и коммерческие ценные бумаги 54
3.1 Фактор времени в краткосрочных финансовых операциях 54
3.1.1 Наращение по простым процентам 54
3.1.2 Дисконтирование по простым процентам 54
3.1.3 Определение процентной ставки и срока проведения операции 54
3.1.4 Эквивалентность процентных ставок r и d 54
3.2 Анализ краткосрочных бескупонных облигаций 54
3.2.1 Доходность краткосрочных бескупонных облигаций 54
3.2.2 Оценка стоимости краткосрочных бескупонных облигаций 54
3.2.3 Автоматизация анализа краткосрочных бескупонных облигаций 54
3.3 Краткосрочные бумаги с выплатой процентов в момент погашения 54
Анализ доходности краткосрочных сертификатов 54
Оценка стоимости краткосрочных сертификатов 54
Автоматизация анализа краткосрочных сертификатов 54
ПРЕДИСЛОВИЕ 4
Глава 1. Фактор времени и оценка потоков платежей 6
1.1 Временная ценность денег 6
1.2 Методы учета фактора времени в финансовых операциях 7
1.3 Оценка потоков платежей 9
1.3.1 Финансовые операции с элементарными потоками платежей 9
Будущая величина элементарного потока платежей 10
Современная величина элементарного потока платежей 12
Исчисление процентной ставки и продолжительности операции 13
Автоматизация анализа элементарных потоков платежей 13
1.3.2 Денежные потоки в виде серии равных платежей (аннуитеты) 20
Будущая стоимость простого (обыкновенного) аннуитета 21
Текущая (современная) стоимость простого аннуитета 22
Исчисление суммы платежа, процентной ставки и числа периодов 23
Автоматизация исчисления характеристик аннуитетов 24
1.3.3 Денежные потоки в виде серии платежей произвольной величины 26
Глава 2. Анализ долгосрочных бумаг с фиксированным доходом 29
2.1 Виды облигаций и их основные характеристики 29
2.2 Методы оценки облигаций с периодическим доходом 32
2.2.1 Доходность операций с купонными облигациями 33
Накопленный купонный доход – НКД 33
Текущая доходность (current yield – Y) 35
Доходность к погашению (yield to maturity – YTM) 36
2.2.2 Определение стоимости облигаций с фиксированным купоном 38
2.2.3 Средневзвешенная продолжительность платежей (дюрация) 43
2.2.4 Автоматизация анализа купонных облигаций 50
Функции для определения характеристик купонов 52
Функции для определения дюрации 54
Функции для определения курсовой цены и доходности облигации 54
2.3 Оценка бескупонных облигаций (облигаций с нулевым купоном) 54
Доходность долгосрочных бескупонных облигаций 54
Оценка стоимости бескупонных облигаций 54
2.4 Бессрочные облигации 54
Доходность бессрочных облигаций 54
Оценка стоимости бессрочных облигаций 54
2.5 Ценные бумаги с выплатой процентов в момент погашения 54
Анализ доходности долгосрочных сертификатов 54
Оценка стоимости долгосрочных сертификатов 54
Автоматизация анализа долгосрочных сертификатов 54
Глава 3. Краткосрочные и коммерческие ценные бумаги 54
3.1 Фактор времени в краткосрочных финансовых операциях 54
3.1.1 Наращение по простым процентам 54
3.1.2 Дисконтирование по простым процентам 54
3.1.3 Определение процентной ставки и срока проведения операции 54
3.1.4 Эквивалентность процентных ставок r и d 54
3.2 Анализ краткосрочных бескупонных облигаций 54
3.2.1 Доходность краткосрочных бескупонных облигаций 54
3.2.2 Оценка стоимости краткосрочных бескупонных облигаций 54
3.2.3 Автоматизация анализа краткосрочных бескупонных облигаций 54
3.3 Краткосрочные бумаги с выплатой процентов в момент погашения 54
Анализ доходности краткосрочных сертификатов 54
Оценка стоимости краткосрочных сертификатов 54
Автоматизация анализа краткосрочных сертификатов 54
3.4 Анализ операций с векселями 54
Анализ доходности финансовых векселей 54
Оценка стоимо
Примерами финансовых операций с подобными потоками платежей являются срочные депозиты, единовременные ссуды, некоторые виды ценных бумаг и др. Нетрудно заметить, что численный ряд в этом случае состоит всего из двух элементов – {-PV; FV} или {PV; -FV}.
Операции с элементарными потоками платежей характеризуются четырьмя параметрами – FV, PV, r, n. При этом величина любого из них может быть определена по известным значениям трех остальных.
Рассмотрим технологию исчисления будущей величины элементарного потока платежей на следующем примере.
Пример 1.2
Сумма в 10000 помещена в банк на депозит сроком на 4 года. Ставка по депозиту – 10% годовых. Проценты по депозиту начисляются раз в год. Какова будет величина депозита в конце срока?
По условиям данной операции известными величинами являются: первоначальная сумма вклада PV = 10000, процентная ставка r = 10% и срок n = 4 года.
Определим будущую величину вклада на конец первого периода:
FV1 = PV + PV´ r = PV(1 + r) = 10000(1 + 0,1) = 11000.
Соответственно для второго периода величина FV будет равна:
FV2 = FV1 + FV1´ r = PV(1 + r) + PV(1 + r)´ r = PV(1 + r)2 =
= 10000(1 + 0,1)2 = 12100.
Для последнего периода (n = 4):
FV4 = FV3 + FV3´ r = PV(1 + r)4 = 10000(1 + 0,1)4 = 14641.
Общее соотношение для определения будущей величины имеет следующий вид:
. (1.3)
Нетрудно заметить, что величина FV существенно зависит от значений r и n. Например, будущая величина суммы всего в 1,00 при годовой ставке 15% через 100 лет составит 1174313,45!
На рис. 1.1 приведен график, отражающий рост суммы в 1,00 при различных ставках сложных процентов.
Рис. 1.1. Рост суммы в 1.00 по ставкам сложных процентов
На практике, в зависимости от условий финансовой сделки, проценты могут начисляться несколько раз в году, например ежемесячно, ежеквартально и т.д. В этом случае соотношение (1.3) для исчисления будущей стоимости будет иметь следующий вид:
, (1.4)
где m – число периодов начисления в году.
Очевидно, что чем больше m, тем быстрее идет наращение суммы.
Допустим, что в примере 1.2 проценты выплачиваются ежеквартально (т = 4). Определим FV4,4 :
FV4,4 = 10000,00 (1 + 0,10/4)16 = 14845,06, т.е. на 204,06 больше, чем при начислении процентов раз в год.
Часто возникает необходимость сравнения условий финансовых операций, предусматривающих различные периоды начисления процентов. В этом случае осуществляют приведение соответствующих процентных ставок к их годовому эквиваленту:
, (1.5)
где r – номинальная ставка; m – число периодов начисления.
Полученную при этом величину называют эффективной процентной ставкой (effective percentage rate – EPR) или ставкой сравнения.
Осуществим расчет эффективной процентной ставки и будущей величины вклада для примера 1.2:
ЕPR = (1 + 0,1/4)4- 1 = 0,103813
FV = 10000,00 (1 + 0,103813)4 = 14845,06.
Таким образом, условия помещения суммы в 10000,00 на депозит сроком на 4 года под 10% годовых при ежеквартальном начислении процентов и под 10,3813%, начисляемых раз в год, являются эквивалентными.
Формулу для определения современной величины элементарного потока платежей можно легко вывести из соотношения (1.3), путем деления его обеих частей на величину (1 + r)n. Выполнив соответствующие математические преобразования, получим:
. (1.6)
Пример 1.3
Выплаченная по 4-х летнему депозиту сумма составила величину в 14641,00. Определить первоначальную величину вклада, если ставка по депозиту равна 10% годовых.
PV = 14641,00 / (1 + 0,1)4 = 10000,00.
На рис 1.2 приведена графическая диаграмма, отражающая процесс дисконтирования суммы в 1,00 при различных ставках сложных процентов.
Рис. 1.2. Дисконтирование суммы в 1,00 при различных ставках r
Как и следовало ожидать, величина PV также зависит от продолжительности операции и процентной ставки, однако зависимость здесь обратная – чем больше r и n, тем меньше текущая (современная) величина.
В случае, если начисление процентов осуществляется m-раз в году, соотношение (1.6) будет иметь следующий вид:
. (1.7)
Формулы для определения величин r и n могут быть получены из (1.3) и приводятся ниже в готовом виде.
При известных величинах FV, PV и n, процентную ставку можно определить по формуле:
. (1.8)
Пример 1.4
Сумма в 10000,00 помещенная в банк на 4 года составила величину в 14641,00. Определить процентную ставку (доходность операции).
r = (14141,00 / 10000,00)1/4 - 1 = 0,10 (10%).
Длительность операции определяется путем логарифмирования:
. (1.9)
Приведенные соотношения (1.3 – 1.9) позволяют определить основные количественные характеристики финансовых операций, в результате проведения которых возникают элементарные потоки платежей.
Соотношения (1.3 – 1.9) могут быть легко реализованы в виде соответствующих формул ППП EXCEL. Например, соотношение (1.9), могло бы быть задано следующим арифметическим выражением:
=LOG(FV / PV) / LOG(1 + r), где
LOG – имя функции для вычисления логарифма;
FV, PV, r – соответствующие числовые значения.
Однако современные табличные процессоры содержат множество готовых функций, автоматизирующих проведение финансовых расчетов.
В ППП EXCEL для этих целей реализована специальная группа из 52 функций, получивших название финансовых.
Для исчисления характеристик финансовых операций с элементарными потоками платежей удобно использовать функции БЗ(), КПЕР(), НОРМА(), ПЗ() (табл. 1.1).
Таблица 1.1
Функции для анализа потоков платежей
Наименование функции |
Формат функции | |
Англоязычная версия |
Русская версия |
|
FV |
БЗ |
БЗ(ставка; кпер; платеж; нc; [тип]) |
NPER |
КПЕР |
КПЕР(ставка; платеж; нз; бс; [тип]) |
RATE |
НОРМА |
НОРМА(кпер; платеж; нз; бс; [тип]) |
PV |
ПЗ |
ПЗ(ставка; кпер; платеж; бс; [тип]) |
PMT |
ППЛАТ |
ППЛАТ(ставка; кпер; нз; [бс]; [тип]) |
FVSHEDULE |
БЗРАСПИС |
БЗРАСПИС(сумма; массив ставок) |
NOMINAL |
НОМИНАЛ |
НОМИНАЛ(эф_ставка; кол_пер ) |
EFFECT |
ЭФФЕКТ |
ЭФФЕКТ(ном_ставка; кол_пер) |
Как следует из табл. 1.1, большинство функций имеют одинаковый набор базовых аргументов :
ставка – процентная ставка (норма доходности или цена заемных средств – r);
кпер – срок (число периодов – п) проведения операции;
выплата – величина периодического платежа (CF);
нз – начальное значение (величина PV);
бс – будущее значение (FV);
[тип] – тип начисления процентов (1 – начало периода, 0 – конец периода), необязательный аргумент.
Как вы уже знаете, любая из 4-х характеристик FV, PV, r и п подобных операций может быть определена по известным величинам трех остальных. Поэтому список аргументов каждой функции состоит из трех известных величин (аргумент “выплата” здесь не требуется, так как денежный поток состоит из единственного платежа), при задании которых мы будем использовать обозначения, введенные выше.
Для простого расчета необходимой характеристики достаточно ввести в любую ячейку электронной таблицы имя соответствующей функции с заданными аргументами.
Напомним, что аргументы функций в русифицированной версии ППП EXCEL разделяются символом “;”, а признаком ввода функции служит символ “=”.
Функция БЗ(ставка; кпер; выплата; нз; [тип])
Эта функция позволяет определить будущее значение потока платежей, т.е. величину FV.
Пример 1.5
Определить будущую величину вклада в 10000,00, помещенного в банк на 5 лет под 5% годовых, если начисление процентов осуществляется:
а) раз в году; б) раз в месяц.
Введите в любую ячейку ЭТ:
=БЗ(0,05; 5; 0; -10000) (Результат: 12762,82)
=БЗ(0,05/12; 5*12; 0; -10000) (Результат: 12833,59).
Обратите особое внимание на способы задания аргументов.
Значение процентной ставки (аргумент “ставка”) обычно задается в виде десятичной дроби: 5% – 0,05; 10% – 0,1; 100% – 1 и т.д.
Если начисление процентов осуществляется m-раз в году, аргументы необходимо откорректировать соответствующим образом:
r = r/m и n = n ´ m.
Аргумент “начальное значение – нз” здесь задан в виде отрицательной величины (-10000), так как с точки зрения вкладчика эта операция влечет за собой отток его денежных средств в текущем периоде с целью получения положительной величины (12762,82) через 5 лет.
Однако для банка, определяющего будущую сумму возврата средств по данному депозиту, этот аргумент должен быть задан в виде положительной величины, так как означает поступление средств (увеличение пассивов):
=БЗ(0,05; 5; 0; 10000) (Результат: -12762,82).
Полученный же при этом результат – отрицательная величина, так как операция означает расходование средств (возврат денег банком вкладчику).
Как уже отмечалось, аргумент "выплата" не используется при анализе элементарных потоков, поэтому здесь и в дальнейшем он имеет нулевое значение. Его также можно задать в виде пустого параметра – ";", например:
=БЗ(0,05; 5; ; 10000) (Результат: -12762,82).
Особо отметим тот факт, что последний аргумент функции – “тип” в данном случае опущен, так как начисление процентов в подобных операциях, как правило, осуществляется в конце каждого периода. В противном случае функция была бы задана с указанием всех аргументов.
Функция КПЕР(ставка; выплата; нз; бс; [тип])
Функция КПЕР() вычисляет количество периодов начисления процентов, исходя из известных величин r, FV и PV.
Пример 1.6
По вкладу в 10000,00, помещенному в банк под 5% годовых, начисляемых ежегодно, была выплачена сумма 12762,82. Определить срок проведения операции (количество периодов начисления).
=КПЕР(0,05; 0; -10000; 12762,82) (Результат: 5 лет).
Соответственно при начислении процентов раз в месяц, число необходимых периодов будет равно:
=КПЕР(0,05/12; 0;-10000;12762,82) (Результат: 60 месяцев).
Следует обратить особое внимание на то, что результатом применения функции является число периодов (а не число лет), необходимое для проведения операции.
Функция НОРМА(кпер; выплата; нз; бс; [тип])
Функция НОРМА() вычисляет процентную ставку, которая в зависимости от условий операции может выступать либо в качестве цены, либо в качестве нормы ее рентабельности.
Определим процентную ставку для примера 1.6.
=НОРМА(5; 0; -10000; 12762,82) (Результат: 0,05 или 5%).
Результат вычисления величины r выдается в виде периодической процентной ставки. Для определения годовой процентной ставки, полученный результат следует умножить на количество начислений в году.
Необходимо помнить, что для получения корректного результата при работе функций КПЕР() и НОРМА(), аргументы "нз" и "бс" должны иметь противоположные знаки. Данное требование вытекает из экономического смысла подобных операций.
Следующие три функции БЗРАСПИС(), НОМИНАЛ() и ЭФФЕКТ() являются вспомогательными. Они предназначены для удобства проведения соответствующих расчетов.
Функция БЗРАСПИС(нз; массив ставок)
Функцию БЗРАСПИС() удобно использовать для расчета будущей величины разовой инвестиции в случае, если начисление процентов осуществляется по плавающей ставке. Подобные операции широко распространены в отечественной финансовой и банковской практике. В частности, доходы по облигациям государственного сберегательного займа (ОГСЗ), начисляются раз в квартал по плавающей купонной ставке.
Пример 1.7
Ставка банка по срочным валютным депозитам на начало года составляет 20% годовых, начисляемых раз в квартал. Первоначальная сумма вклада - $1000. В течении года ожидается снижение ставок раз в квартал на 2, 3 и 5 процентов соответственно. Определить величину депозита к концу года.
Введем ожидаемые значения процентных ставок в смежный блок ячеек электронной таблицы, например: 0,2/4 в ячейку B1, 0,18/4 в ячейку B2, 0,17/4 в ячейку B3 и 0,15/4 в ячейку B4. Тогда функция будет иметь следующий вид:
=БЗРАСПИС(1000; B1.B4) (Результат: 1186,78).
Заметьте, что величина годовой ставки скорректирована на количество периодов начисления.
Функции НОМИНАЛ(эф_ставка; кол_пер), ЭФФЕКТ(ном_ставка; кол_пер)
Функции НОМИНАЛ() и ЭФФЕКТ() вычисляют номинальную и эффективную процентные ставки соответственно.
Эти функции удобно использовать при сравнении операций с различными периодами начисления процентов. При этом доходность финансовой операции обычно измеряется эффективной процентной ставкой.
Пример 1.8
Ставка банка по срочным валютным депозитам составляет 18% годовых. Какова реальная доходность вклада (т.е. эффективная ставка) если проценты выплачиваются:
а) ежемесячно
=ЭФФЕКТ(0,18; 12) (Результат: 0,1956 или 19,56%);
г) раз в год
=ЭФФЕКТ(0,18; 1) (Результат: 0,18 или 18%).
Функция номинал() выполняет обратное действие, т.е. позволяет определить номинальную ставку по известной величине эффективной. Например:
=НОМИНАЛ(0,1956; 12) (Результат: 0,1799 или 18%).
На рис. 1.3 приведен простейший пример шаблона, позволяющий решать типовые задачи по исчислению параметров финансовых операций с элементарными потоками платежей. На рис. 1.4 этот шаблон приведен в режиме отображения формул. Дадим необходимые пояснения.
Шаблон состоит из двух частей. Первая часть занимает блок ячеек А2.В10 и предназначена для ввода исходных данных (известных параметров финансовой операции). Текстовая информация в ячейках А2.А10 содержит наименование исходных параметров финансовой операции, ввод которых осуществляется в ячейки B6.B10. Ячейка В7 содержит принятое по умолчание число начислений процентов, равное 1 (т.е. раз в году). Для получения искомого результата необходимо ввести еще три величины.
Информация о работе Анализ операций с ценными бумагами с Microsoft Excel