Анализ операций с ценными бумагами с Microsoft Excel

Автор работы: Пользователь скрыл имя, 11 Мая 2014 в 12:16, лекция

Краткое описание

Настоящая работа посвящена рассмотрению методов количественного анализа операций с долговыми бумагами, приносящими фиксированный доход – облигациями, депозитными сертификатами, векселями и др. Термин "фиксированный доход" здесь призван подчеркнуть тот факт, что подобные ценные бумаги являются обязательствами выплатить заранее известные суммы в установленные сроки.
Проведение такого анализа требует глубокого понимания лежащих в его основе теоретических концепций, а также практического овладения основными методами финансовых расчетов.

Содержание

ПРЕДИСЛОВИЕ 4
Глава 1. Фактор времени и оценка потоков платежей 6
1.1 Временная ценность денег 6
1.2 Методы учета фактора времени в финансовых операциях 7
1.3 Оценка потоков платежей 9
1.3.1 Финансовые операции с элементарными потоками платежей 9
Будущая величина элементарного потока платежей 10
Современная величина элементарного потока платежей 12
Исчисление процентной ставки и продолжительности операции 13
Автоматизация анализа элементарных потоков платежей 13
1.3.2 Денежные потоки в виде серии равных платежей (аннуитеты) 20
Будущая стоимость простого (обыкновенного) аннуитета 21
Текущая (современная) стоимость простого аннуитета 22
Исчисление суммы платежа, процентной ставки и числа периодов 23
Автоматизация исчисления характеристик аннуитетов 24
1.3.3 Денежные потоки в виде серии платежей произвольной величины 26
Глава 2. Анализ долгосрочных бумаг с фиксированным доходом 29
2.1 Виды облигаций и их основные характеристики 29
2.2 Методы оценки облигаций с периодическим доходом 32
2.2.1 Доходность операций с купонными облигациями 33
Накопленный купонный доход – НКД 33
Текущая доходность (current yield – Y) 35
Доходность к погашению (yield to maturity – YTM) 36
2.2.2 Определение стоимости облигаций с фиксированным купоном 38
2.2.3 Средневзвешенная продолжительность платежей (дюрация) 43
2.2.4 Автоматизация анализа купонных облигаций 50
Функции для определения характеристик купонов 52
Функции для определения дюрации 54
Функции для определения курсовой цены и доходности облигации 54
2.3 Оценка бескупонных облигаций (облигаций с нулевым купоном) 54
Доходность долгосрочных бескупонных облигаций 54
Оценка стоимости бескупонных облигаций 54
2.4 Бессрочные облигации 54
Доходность бессрочных облигаций 54
Оценка стоимости бессрочных облигаций 54
2.5 Ценные бумаги с выплатой процентов в момент погашения 54
Анализ доходности долгосрочных сертификатов 54
Оценка стоимости долгосрочных сертификатов 54
Автоматизация анализа долгосрочных сертификатов 54
Глава 3. Краткосрочные и коммерческие ценные бумаги 54
3.1 Фактор времени в краткосрочных финансовых операциях 54
3.1.1 Наращение по простым процентам 54
3.1.2 Дисконтирование по простым процентам 54
3.1.3 Определение процентной ставки и срока проведения операции 54
3.1.4 Эквивалентность процентных ставок r и d 54
3.2 Анализ краткосрочных бескупонных облигаций 54
3.2.1 Доходность краткосрочных бескупонных облигаций 54
3.2.2 Оценка стоимости краткосрочных бескупонных облигаций 54
3.2.3 Автоматизация анализа краткосрочных бескупонных облигаций 54
3.3 Краткосрочные бумаги с выплатой процентов в момент погашения 54
Анализ доходности краткосрочных сертификатов 54
Оценка стоимости краткосрочных сертификатов 54
Автоматизация анализа краткосрочных сертификатов 54
ПРЕДИСЛОВИЕ 4
Глава 1. Фактор времени и оценка потоков платежей 6
1.1 Временная ценность денег 6
1.2 Методы учета фактора времени в финансовых операциях 7
1.3 Оценка потоков платежей 9
1.3.1 Финансовые операции с элементарными потоками платежей 9
Будущая величина элементарного потока платежей 10
Современная величина элементарного потока платежей 12
Исчисление процентной ставки и продолжительности операции 13
Автоматизация анализа элементарных потоков платежей 13
1.3.2 Денежные потоки в виде серии равных платежей (аннуитеты) 20
Будущая стоимость простого (обыкновенного) аннуитета 21
Текущая (современная) стоимость простого аннуитета 22
Исчисление суммы платежа, процентной ставки и числа периодов 23
Автоматизация исчисления характеристик аннуитетов 24
1.3.3 Денежные потоки в виде серии платежей произвольной величины 26
Глава 2. Анализ долгосрочных бумаг с фиксированным доходом 29
2.1 Виды облигаций и их основные характеристики 29
2.2 Методы оценки облигаций с периодическим доходом 32
2.2.1 Доходность операций с купонными облигациями 33
Накопленный купонный доход – НКД 33
Текущая доходность (current yield – Y) 35
Доходность к погашению (yield to maturity – YTM) 36
2.2.2 Определение стоимости облигаций с фиксированным купоном 38
2.2.3 Средневзвешенная продолжительность платежей (дюрация) 43
2.2.4 Автоматизация анализа купонных облигаций 50
Функции для определения характеристик купонов 52
Функции для определения дюрации 54
Функции для определения курсовой цены и доходности облигации 54
2.3 Оценка бескупонных облигаций (облигаций с нулевым купоном) 54
Доходность долгосрочных бескупонных облигаций 54
Оценка стоимости бескупонных облигаций 54
2.4 Бессрочные облигации 54
Доходность бессрочных облигаций 54
Оценка стоимости бессрочных облигаций 54
2.5 Ценные бумаги с выплатой процентов в момент погашения 54
Анализ доходности долгосрочных сертификатов 54
Оценка стоимости долгосрочных сертификатов 54
Автоматизация анализа долгосрочных сертификатов 54
Глава 3. Краткосрочные и коммерческие ценные бумаги 54
3.1 Фактор времени в краткосрочных финансовых операциях 54
3.1.1 Наращение по простым процентам 54
3.1.2 Дисконтирование по простым процентам 54
3.1.3 Определение процентной ставки и срока проведения операции 54
3.1.4 Эквивалентность процентных ставок r и d 54
3.2 Анализ краткосрочных бескупонных облигаций 54
3.2.1 Доходность краткосрочных бескупонных облигаций 54
3.2.2 Оценка стоимости краткосрочных бескупонных облигаций 54
3.2.3 Автоматизация анализа краткосрочных бескупонных облигаций 54
3.3 Краткосрочные бумаги с выплатой процентов в момент погашения 54
Анализ доходности краткосрочных сертификатов 54
Оценка стоимости краткосрочных сертификатов 54
Автоматизация анализа краткосрочных сертификатов 54
3.4 Анализ операций с векселями 54
Анализ доходности финансовых векселей 54
Оценка стоимо

Вложенные файлы: 1 файл

Lukasevitch_Analiz_operasiy_s_sennimi_bumagami.doc

— 1.18 Мб (Скачать файл)

В общем случае, доход по купонным облигациям имеет две составляющие: периодические выплаты и курсовая разница между рыночной ценой и номиналом. Поэтому такие облигации характеризуются несколькими показателями доходности: купонной, текущей (на момент приобретения) и полной (доходность к погашению).

Купонная доходность задается при выпуске облигации и определяется соответствующей процентной ставкой. Ее величина зависит от двух факторов: срока займа и надежности эмитента.

Чем больше срок погашения облигации, тем выше ее риск, следовательно тем больше должна быть норма доходности, требуемая инвестором в качестве компенсации. Не менее важным фактором является надежность эмитента, определяющая "качество" (рейтинг) облигации. Как правило, наиболее надежным заемщиком считается государство. Соответственно ставка купона у государственных облигаций обычно ниже, чем у муниципальных или корпоративных. Последние считаются наиболее рискованными.

Поскольку купонная доходность при фиксированной ставке известна заранее и остается неизменной на протяжении всего срока обращения, ее роль в анализе эффективности операций с ценными бумагами невелика.

Однако если облигация покупается (продается) в момент времени между двумя купонными выплатами, важнейшее значение при анализе сделки, как для продавца, так и для покупателя, приобретает производный от купонной ставки показатель – величина накопленного к дате операции процентного (купонного) дохода (accrued interest).

Накопленный купонный доход – НКД

В отечественных биржевых сводках и аналитических обзорах для обозначения этого показателя используется аббревиатура НКД (накопленный купонный доход). Механизм формирования доходов продавца и покупателя для сделки, заключаемой в момент времени между двумя купонными выплатами, продемонстрируем на реальном примере, взятом из практики российского рынка ОГСЗ.

Пример 2.3

ОГСЗ пятой серии с номиналом в 100000, выпущенной 10/04/96 была продана 18/03/97. Дата предыдущей выплаты купона – 10/01/97. Дата ближайшей выплаты купона – 10/04/97. Текущая купонная ставка установлена в размере 33,33% годовых. Число выплат – 4 раза в год.

Поскольку облигация продается 18/03/97, т.е. за 23 дня до следующей выплаты, купонный доход, равный 33,33% годовых от номинала, будет получен 10/04/97 новым хозяином бумаги – покупателем. Определим его абсолютную величину:

CF = 100000 (0,3333/4) = 8332,50.

Для того, чтобы эта операция была выгодной для продавца, величина купонного дохода должна быть поделена между участниками сделки, пропорционально периоду хранения облигации между двумя выплатами.

Причитающаяся участникам сделки часть купонного дохода может быть определена по формуле обыкновенных, либо точных процентов. Накопленный купонный доход на дату сделки можно определить по формуле:

, (2.2)

где CF – купонный платеж; t – число дней от начала периода купона до даты продажи (покупки); N – номинал; k – ставка купона; m – число выплат в год; В = {360, 365 или 366} – используемая временная база (360 для обыкновенных процентов; 365 или 366 для точных процентов).

В рассматриваемом примере с момента предыдущей выплаты 10/01/97 до даты заключения сделки 18/03/97 прошло 67 дней.

Определим величину НКД по облигации на дату заключения сделки:

НКД = (100000 ´ (0,3333 / 4) ´ 67) / 90 = 6203,08

НКДточн. = (100000 ´ (0,3333 / 4) ´ 67) / 91,25 = 6118,10.

Рассчитанное значение представляет собой часть купонного дохода, на которую будет претендовать в данном случае продавец. Свое право на получение части купонного дохода (т.е. за 67 дней хранения) он может реализовать путем включения величины НКД в цену облигации. Для упрощения предположим, что облигация была приобретена продавцом по номиналу.

Определим курс продажи облигации, обеспечивающий получение пропорциональной сроку хранения части купонного дохода:

К = (N + НКД) / 100 = (100000 + 6203,08) / 100 = 106,20308 » 106,2.

Таким образом, курс продажи облигации для продавца, должен быть не менее 106,20. Превышение этого курса принесет продавцу дополнительный доход. В случае, если курсовая цена будет меньше 106,20, продавец понесет убытки, связанные с недополучением своей части купонного дохода.

Соответственно часть купонного дохода, причитающаяся покупателю за оставшиеся 23 дня хранения облигации, может быть определена двумя способами.

1. Исходя из величины НКД на момент сделки:

CF - НКД = 8332,50 - 6203,08 = 2129,42 или

N + CF - P = 100000 + 8332,50 - 106203,08 = 2129,42.

2. Путем определения НКД с момента приобретения до даты платежа:

(100000 ´ (0,3333 / 4) ´ 23) / 360 = 2129,42.

Нетрудно заметить, что курс в 106,2 соответствует ситуации равновесия, когда и покупатель, и продавец, получают свою долю купонного дохода, распределенную пропорционально сроку хранения облигации. Любое отклонение курсовой цены приведет к выигрышу одной стороны и, соответственно, к проигрышу другой.

На практике, минимальный курс продажи данной облигации на бирже 18/03/97 был равен 108,00, средний – 108,17. Средний курс покупки по итогам торгов составил 107,43, а максимальный – 108,20 . Таким образом, в целом, ситуация на рынке в тот день складывалась в пользу продавцов ОГСЗ этой серии.

В процессе анализа эффективности операций с ценными бумагами, для инвестора существенный интерес представляют более общие показатели – текущая доходность (current yield – Y) и доходность облигации к погашению (yield to maturity – YTM). Оба показателя определяются в виде процентной ставки.

Текущая доходность (current yield – Y)

Текущая доходность облигации с фиксированной ставкой купона определяется как отношение периодического платежа к цене приобретения:

, (2.3)

где N – номинал; P – цена покупки; k – годовая ставка купона; K –

курсовая цена облигации.

Текущая доходность продаваемых облигаций меняется в соответствии с изменениями их цен на рынке. Однако с момента покупки она становится постоянной (зафиксированной) величиной, так как ставка купона остается неизменной. Нетрудно заметить, что текущая доходность облигации приобретенной с дисконтом будет выше купонной, а приобретенной с премией – ниже.

Определим текущую доходность операции из предыдущего примера при условии, что ОГСЗ была приобретена по цене 106,20.

или 7,84%.

Как и следовало ожидать, текущая доходность Y ниже ставки купона k (8,33%), поскольку облигация продана с премией, равной НКД.

Показатель текущей доходности не учитывает вторую составляющую поступлений от облигации – курсовую разницу между ценой покупки и погашения (как правило – номиналом). Поэтому он не пригоден для сравнения эффективности операций с различными исходными условиями.

В качестве меры общей эффективности инвестиций в облигации используется показатель доходности к погашению.

Доходность к погашению (yield to maturity – YTM)

Доходность к погашению представляет собой процентную ставку (норму дисконта), устанавливающую равенство между текущей стоимостью потока платежей по облигации PV и ее рыночной ценой P.

Для облигаций с фиксированным купоном, выплачиваемым раз в году, она определяется путем решения следующего уравнения:

, (2.4)

где F – цена погашения (как правило F = N).

Уравнение (2.4) решается относительно YTM каким-либо итерационным методом. Приблизительное значение этой величины можно определить из соотношения (2.5):

. (2.5)

Поскольку применение ППП EXCEL освобождает нас от подобных забот, рассмотрим более подробно некоторые важнейшие свойства этого показателя.

Доходность к погашению YTM – это процентная ставка в норме дисконта, которая приравнивает величину объявленного потока платежей к текущей рыночной стоимости облигации. По сути, она представляет собой внутреннюю норму доходности инвестиции (internal rate of return – IRR). Подробное обсуждение недостатков этого показателя можно найти в [9, 16]. Здесь же мы рассмотрим лишь один из них – нереалистичность предположения о реинвестировании периодических платежей.

Применительно к рассматриваемой теме это означает, что реальная доходность облигации к погашению будет равна YTM только при выполнении следующих условий.

  1. Облигация хранится до срока погашения.
  2. Полученные купонные доходы немедленно реинвестируются по ставке r = YTM.

Очевидно, что независимо от желаний инвестора, второе условие достаточно трудно выполнить на практике. В табл. 2.1 приведены результаты расчета доходности к погашению облигации, приобретенной в момент выпуска по номиналу в 1000 с погашением через 20 лет и ставкой купона 8%, выплачиваемого раз в год, при различных ставках реинвестирования.

Таблица 2.1  
Зависимость доходности к погашению от ставки реинвестирования

Ставка  
реинвестирования  
r

Купонный доход  
за 20 лет

Общий доход  
по облигации  
за 20 лет

Доходность  
к  
погашению

0%

1600,00

1600,00

4,84%

6%

1600,00

3016,00

7,07%

8%

1600,00

3801,00

8,00%

10%

1600,00

4832,00

9,01%


Из приведенных расчетов следует, что между доходностью к погашению YTM и ставкой реинвестирования купонного дохода r существует прямая зависимость. С уменьшением r будет уменьшаться и величина YTM; с ростом r величина YTM будет также расти.

На величину показателя YTM оказывает влияние и цена облигации. Зависимость доходности к погашению YTM облигации со сроком погашения 25 лет и ставкой купона 6% годовых от ее цены Р показана на рис. 2.1.

Рис. 2.1. Зависимость YTM от цены P

Нетрудно заметить, что зависимость здесь обратная. Сформулируем общие правила, отражающие взаимосвязи между ставкой купона k, текущей доходностью Y, доходностью к погашению YTM и ценой облигации Р:

  • если P > N, k > Y > YTM;
  • если P < N, k < Y < YTM;
  • если P = N, k = Y = YTM.

Руководствуясь данными правилами, не следует забывать о зависимости YTM от ставки реинвестирования купонных платежей, рассмотренной выше. В целом, показатель YTM более правильно трактовать как ожидаемую доходность к погашению.

Несмотря на присущие ему недостатки, показатель YTM является одним из наиболее популярных измерителей доходности облигаций, применяемых на практике. Его значения приводятся во всех публикуемых финансовых сводках и аналитических обзорах. В дальнейшем, говоря о доходности облигации, мы будем подразумевать ее доходность к погашению.

2.2.2 Определение стоимости облигаций  с фиксированным купоном

Нетрудно заметить, что денежный поток, генерируемый подобными ценными бумагами представляет собой аннуитет, к которому в конце срока операции прибавляется дисконтированная номинальная стоимость облигации.

Определим современную (текущую) стоимость такого потока:

, (2.6)

где F – сумма погашения (как правило – номинал, т.е. F = N); k – годовая ставка купона; r – рыночная ставка (норма дисконта); n – срок облигации; N – номинал; m – число купонных выплат в году.

Пример 2.4

Определить текущую стоимость трехлетней облигации с номиналом в 1000 и купонной ставкой 8%, выплачиваемых 4 раза в год, если норма дисконта (рыночная ставка) равна 12%.

.

Таким образом, норма доходности в 12% по данной операции будет обеспечена при покупке облигации по цене, приблизительно равной 900,46.

Соотношение (2.6) представляет собой базовую основу для оценки инвестором стоимости облигации.

Определим текущую стоимость облигации из примера 2.4, при условии, что норма дисконта равна 6%.

.

Нетрудно заметить, что текущая стоимость облигации зависит от величины рыночной процентной ставки (требуемой нормы доходности) и срока погашения. Причем зависимость эта обратная. Из базовой модели оценки могут быть выведены две группы теорем, которые приводятся ниже без доказательств [16].

Первая группа теорем отражает взаимосвязи между стоимостью облигации, ставкой купона и рыночной ставкой (нормой доходности):

    • если рыночная ставка (норма доходности) выше ставки купона, текущая стоимость облигации будет меньше номинала (т.е. облигация будет продаваться с дисконтом);
    • если рыночная ставка (норма доходности) меньше ставки купона, текущая стоимость облигации будет больше номинала (т.е. облигация будет продаваться с премией);
    • при равенстве купонной и рыночной ставок текущая стоимость облигации равна номиналу.

Рассмотренный выше пример 2.4 может служить практической иллюстрацией справедливости изложенных положений.

Вторая группа теорем характеризует связь между стоимостью облигации и сроком ее погашения:

    • если рыночная ставка (норма доходности) выше ставки купона, сумма дисконта по облигации будет уменьшаться по мере приближения срока погашения;
    • если рыночная ставка (норма доходности) меньше ставки купона, величина премии по облигации будет уменьшаться по мере приближения срока погашения;
    • чем больше срок обращения облигации, тем чувствительнее ее цена к изменениям рыночной ставки.

Приведенные положения требуют более детального рассмотрения. Для упрощения будем полагать, что выплата купона производится раз в год.

Пример 2.5

Срок обращения облигации с номиналом в 1000,00 составляет 10 лет. Ставка купона, выплачиваемая раз в год, равна 15%. Определить стоимость облигации, если:

Информация о работе Анализ операций с ценными бумагами с Microsoft Excel