Амилолитические преператы

Автор работы: Пользователь скрыл имя, 15 Января 2012 в 10:57, реферат

Краткое описание

Амилолитические препараты широко выпускаются в нашей стране и за рубежом. В основном это крупнотоннажное производство. Амилазы находят применение почти во всех областях, где перерабатывается крахмалсо-держащее сырье. Амилазы используют для осахаривания зернового и кар­тофельного крахмала. Самым большим потребителем амилолитических ферментов является спиртовая и пивоваренная промышленности, где в на­стоящее время солод (проращенное зерно) успешно заменяется амилолитическими ферментными препаратами.

Вложенные файлы: 1 файл

АМИЛОЛИТИЧЕСКИЕ ПРЕПАРАТЫ.doc

— 106.50 Кб (Скачать файл)

АМИЛОЛИТИЧЕСКИЕ ПРЕПАРАТЫ

     Амилолитические препараты широко выпускаются в  нашей стране и за рубежом. В основном это крупнотоннажное производство. Амилазы находят применение почти  во всех областях, где перерабатывается крахмалсо-держащее сырье. Амилазы  используют для осахаривания зернового и кар­тофельного крахмала. Самым большим потребителем амилолитических ферментов является спиртовая и пивоваренная промышленности, где в на­стоящее время солод (проращенное зерно) успешно заменяется амилолитическими ферментными препаратами.

 Источники получения амилаз

     Амилазы очень широко распространены в природе. Они синтезируются многими микроорганизмами (бактерии, грибы, актиномицеты, дрожжи), животными и растениями. До развития ферментной промышленности главным  промышленным источником получения амилаз в европейских странах было проросшее зерно (солод). Для медицинских целей амилазы получали из животного сырья. В настоящее время главным источником амилаз являются микроорганизмы, особенно бактерии, грибы и реже дрожжи.

Механизм действия и свойства амилаз

     Субстратами для действия амилаз являются крахмал, состоящий из амилозы и амилопектина, продукты частичного гидролиза крахмала и гликоген.

     Крахмал - растительный полисахарид с очень  сложным строением. Это двухкомпонентное соединение, состоящее из 13-30% амилозы и 70-85% амилопектина. Оба компонента неоднородны, их молекулярная масса (М. м.) колеблется в широких пределах и зависит от природы крахмала. Амилоза - это неветвящийся полимер, в котором остатки глюкозы соединены a-1, 4-гликозидной связью; степень полимеризации около 2000. В «аномальных» амилозах с одной-двумя a-1, 6-связями полимеризация может возрасти до 6000 (рис.1). Амилоза практически не обладает восстанавливающей способностью, так как в каждой молекуле амилозы имеется только одна свободная альдегидная группа.

     Молекула  амилозы представляет собой растянутую спираль, шаг которой составляет 10,6 А и в каждый виток входит 3 остатка глюкозы.   
 

                    

Рис 1. Строение амилозы:

а — амилоза  без аномальных отклонений; б - схема возможных ветвлений амилозы; в — спираль амилозы в растворе с заключенными в ее полость молекулами йода.

Концевые звенья с альдегидными группами 1 разветвление 2 разветвления 4 разветвления 8 разветвлений

16 концевых звеньев 64 концевых звена

Рис. 2.2. Амилопектин, схема дихотомического деления  амилопектина (по К. Мейеру):

а - в плоскости; б - в пространстве.

     Максимальнаяная длина молекулы амилозы достигает 7000 А. В растворе спираль сжимается за счет увеличения витка, в котором уже участвует 6 остатков глюкозы. При вхождении молекул йода в спираль амилозы возникает характерный синий цвет. Строго говорить о величине молекулы амилозы нельзя, т. е. даже из одного образца крахмала извлекается амилоза, с величиной молекулы от 500 до 2000 остатков глюкозы. Амилопектин имеет большую молекулярную массу, чем амилоза, и более сложное строение. Это ветвящийся полисахарид. Предполагается, амилопектин ветвится дихотомически, т. е. число концевых звеньев всегда на единицу больше числа звеньев, дающих ветвление, а сумма этих чисел дает общее число звеньев по всей цепи (см. рис. 2.2).

     Механизм  действия. К группе амилотических  ферментов относятся a- и b-амилазы, глюкоамилаза, пуллуланаза, изоамилаза и некоторые  другие ферменты. Амилазы бывают двух типов: эндо- и экзоамилазы. Четко выраженной эндоамилазой является а-амилаза, способная к разрыву внутримолекулярных связей в высокополимерных цепях субстрата.

     Глюкоамилаза  и b-амилаза являются экзоамилазами, т. е. ферментами, атакующими субстрат с нередуцирующего конца.

     При изучении механизма действия амилаз имеются определенные сложности, и  прежде всего они заключаются  в том, что субстрат - крахмал неоднороден  и имеет различные характеристики по степени полимеризации гли-козидной цепи и количеству ветвлений.

     Реакции, катализируемые амилазами, имеют две  стадии: короткую -предстационарную и  длительную - стационарную. Во время  первой стадии эндоамилаза быстро уменьшает  молекулярную массу субстрата, образуя  смесь линейных и разветвленных  олигосахаридов. Второй этап реакции продолжается, пока продукты гидролиза не перестанут окрашиваться йодом; он протекает значительно медленнее и зависит от индивидуальных свойств фермента и его природы. Поэтому конечные продукты гидролиза а-амилазами могут быть различными. Первая стадия воздействия фермента на субстрат хотя и носит неупорядоченный характер, имеет для всех видов a-амилаз схожий механизм.

     Существует  две гипотезы о механизме действия экзоамилаз на субстрат. Первая гипотеза предполагает, что, воздействуя на субстрат по одноцепочечному или «молниеобразному» механизму, экзоамилаза образует фермент-субстратный комплекс с захватом нередуцирующего конца цепи.

     Дальнейшее  продвижение фермента по этой цепи происходит до полного ее гидролиза. По второй гипотезе (b- и глюкоамилаза действуют на субстрат путем механизма множественной атаки, т. е. фермент образует комплекс с молекулой субстрата, затем через несколько этапов этот комплекс распадается и фермент связывается с новой молекулой субстрата. Иными словами, при множественной атаке происходит нечто среднее между неупорядоченным механизмом и одноцепочечной, «молниеобразной» атакой. Для полного гидролиза по этому механизму одна молекула субстрата должна образовывать много раз фермент-субстратные комплексы. При этом возможен гидролиз нескольких связей в одном каталитическом акте.

     Механизм  воздействия амилаз на субстрат может  быть рассмотрен с нескольких позиций:

1)     вид разрываемой связи (a-1,4 или  a-1,6);

2)     тип воздействия на субстрат (эндо- или экзо-);

3)     влияние на скорость гидролиза степени полимеризации субстрата;

4) возможность  гидролиза олигосахаридов;

4)     способность фермента к множественной  атаке субстрата. 

     Наличие признаков амилаз, отраженных в 3 и 4 позициях, при действии на линейные субстраты может свидетельствовать о существовании у этих ферментов подцентровой структуры. Вероятно, активный центр амилазы может состоять из нескольких  подцентров, каждый из которых может вступать в контакты с глюкозным остатком. Энергия взаимодействия (А;), выраженная в единицах свободной энергии (кДж/моль), определяет подцентровое сродство фермента к субстрату. Это сродство индивидуально и может быть как положительным, так и отрицательным. Вероятность существования подцентровых структур амилаз помогает установить строение активного центра амилаз, дает более четкое объяснение субстратной специфичности, но не дает объяснений механизма гидролиза разветвленных субстратов.

     a-Амилаза.  а-Амилаза (а-1,4-глюкан-4-глюканогидролаза, КФ 3.2.1.1.) является эндоамилазой, вызывающей  гидролитическое расщепление a-1,4-гли-козидных связей внутри высокополимеризованного субстрата. Фермент назван a-амилазой потому, что он высвобождает глюкозу в a-мутамерной форме.

     а-Амилаза - водорастворимый белок, обладающий свойствами глобулина и имеющий  М. м. 45 000-60 000. Своего рода исключением является a-амилаза В. macerans, которая имеет М. м. 130 000. Есть указания, что некоторые термостабильные a-амилазы имеют М. м. 14 000-15 000, но в их молекулах содержится в 2-3 раза больше атомов кальция.

     Все а-амилазы относятся к металлоэнзимам, содержание в них Са колеблется от 1 до 30 г атом на 1 г  моль фермента. Полное удаление кальция приводит к инактивации фермента. Повторное введение кальция в среду может частично восстановить его активность. a-Амилаза В. subtilis с помощью иона цинка способна образовывать димерную форму, чего лишены другие a-амилазы. Все a-амилазы устойчивы к воздействию протеаз. Они богаты тирозином и триптофаном. Глютаминовая и аспарагиновая кислоты составляют 25% массы белка. Наличие этих кислот в а-амилазе связывают с их оса-харивающей способностью. Так, разжижающие a-амилазы не имеют сульфгидрильных групп, а осахаривающие содержат один остаток цистеина. Сравнительно мало или совсем отсутствуют в а-амилазах содержащие серу аминокислоты. Некоторые a-амилазы грибного происхождения имеют углеводный фрагмент, в состав которого могут входить манноза, ксилоза, гексозоамин, но функции его не установлены.

     В зависимости от вида микроорганизма свойства ос-амилаз могут сильно отличаться не только по механизму воздействия  на субстрат и конечным продуктам, но и по оптимальным условиям для  проявления максимальной активности.

     Действуя  на целое крахмальное зерно, a-амилаза атакует его, разрыхляя поверхность и образуя каналы и бороздки, т.е. как бы раскалывает зерно на части. Клейстеризованный крахмал гидролизуется ею с образованием на окрашиваемые йодом продукты - в основном состоящие из низкомолекулярных декстринов. Процесс гидролиза крахмала многостадийный. В результате воздействия a-амилазы на первых стадиях процесса в гидролизате накапливаются декстрины, затем появляются неокрашивающиеся йодом тетра- и тримальтоза, которые очень медленно гидролизуются a-амилазой до ди- и моносахаридов.

     Все a-амилазы проявляют наименьшее сродство к гидролизу концевых связей в  субстрате. Некоторые же а-амилазы, особенно грибного происхождения, на второй стадии процесса гидролизуют субстрат более глубоко с образованием небольшого количества мальтозы и глюкозы. Схему гидролиза под действием а-амилазы можно записать следующим образом:

                  а-Амилаза                                            

Крахмал,----------------> а-Декстрины + Мальтоза + Глюкоза 

гликоген                          (много)            (мало)         (мало) 

     b-Амилаза. b-Амилаза (a-1,4-глюкан мальтогидролаза,  КФ 3.2.1.2) - активный белок, обладающий  свойствами альбумина. Каталитический  центр фермента содержит сульфгидрильные  и карбоксильные группы и имидозольный цикл остатков гистидина. b-Амилаза -экзофермент концевого действия, проявляющий сродство к предпоследней b

-1,4-связи с  нередуцирующего конца линейного  участка амилозы и амилопектина.

     В отличие от a-амилазы b-амилаза практически  не гидролизует нативный крахмал, тогда как клейстеризованный крахмал гидролизуется ею с образованием мальтозы b-конфигурации, поэтому данная амилаза по аналогии с a-амилазой называется b-амилазой. Если гидролизу подвергается амилоза, то гидролиз идет полностью до мальтозы. Незначительное количество декстринов может образовываться при гидролизе «аномальных»  амилоз, так как гидролиз b-амилазой идет только по линейной цепи до a-1,6-связей. Если субстратом для b-амилазы служит амилопектин, то гидролиз идет в значительно меньшей степени. b-Амилаза отщепляет фрагмент с нередуцирующего конца участка от внешних линейных ветвей, имеющих по 20-26 глюкозных остатков, с образованием 10—12молекул мальтозы. Гидролиз приостанавливается на предпоследней a-1,4-связи, граничащей с a-1,6-связью. В гидролизате накапливается 54-58% мальтозы, остальное составляют высокомолекулярные декстрины, содержащие значительное количество а-1,6-связей - так называемые b-декстрины. Действие b-амилазы на крахмал можно записать в виде следующей схемы:

                 b-Амилаза  

Крахмал,----------------> Мальтоза + р-Декстрин 

гликоген                     (54-58%)       (42-46%)

     b-Амилазы  проявляют большую стабильность  в отсутствие ионов Са2+. Молекулярная  масса b-амилазы растений достаточно  высока, она составляет от 50 000до 200 000. Фермент может состоять из одной или четырех субъединиц до 50 000 каждая. Фермент содержит SH-группы и чувствителен к действию тяжелых металлов. Считается, что (b-ами-лаза обладает высокой способностью к множественной атаке субстрата. Для амилозы средней молекулярной массы в одном присоединении фермента к субстрату возможно отщепление до четырех остатков мальтозы. При увеличении молекулярной массы субстрата возможно и большее количество мест атаки. 
 
 
 
 
 
 
 
 
 
 

     ГЛЮКОАМИЛАЗА

     Глюкоамилаза (а-1,4-глюкан глюкогидролаза, КФ 3.2.1.3.) широко распространена в природе. Она синтезируется многими микроорганизмами и образуется в животных тканях, особенно в печени, почках, плаценте кишечника и т. д. Фермент в литературе известен под различными названиями: амилоглюкозидаза, g-амилаза, лизосомальная a-глюкозидаза, кислая мальтаза, матулаза и экзо-1,4-a-глюкозидаза. Глюкоамилаза катализирует последовательное отщепление концевых остатков a-D-глюкозы с нередуцирующих концов субстрата. Это фермент с экзогенным механизмом воздействия на субстрат. Многие глюкоамилазы обладают способностью так же быстро, как и a-1,4-связь, гидролизовать a-1,6-глюкозидные связи. Но это происходит только в том случае, когда за a-1,6-связью следует a-1,4-связь, поэтому декстран ими не гидролизуется. Отличительной особенностью глюкоамилаз является способность в десятки раз быстрее гидролизовать высокополимеризованный субстрат, чем олиго-и дисахариды.

Информация о работе Амилолитические преператы