Автор работы: Пользователь скрыл имя, 29 Октября 2013 в 00:26, лекция
В молекулах всех природных аминокислот ( за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома. Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Причем, при прохождении через них поляризованного луча происходит поворот плоскости поляризации либо в право (+), либо влево (–). По расположению атомов и атомных группировок в пространстве относительно асимметрического атома различают L- и D-стереоизомеры аминокислот. Знак и величина оптического вращения зависят от природы боковой цепи аминокислот (R-группы).
Министерство образования Республики Беларусь
УО МОГИЛЕВСКИЙ
УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ
КАФЕДРА ХИМИЧЕСКОЙ ТЕХНОЛОГИИ
ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ
БИОЛОГИЧЕСКАЯ ХИМИЯ
КОНСПЕКТ ЛЕКЦИЙ
для студентов специальностей
49 01 01, 49 01 02, 91 01 01
БЕЛКИ
И НУКЛЕИНОВЫЕ КИСЛОТЫ
Могилев, 2004
УКД
ББК
Рассмотрен
и рекомендован к изданию кафедрой
химической технологии высокомолекулярных
соединений
Протокол № __ от «__»_____________2004 г.
Рассмотрен и рекомендован к изданию секцией выпускающих кафедр.
Протокол № __ от «__»_____________2004 г.
Составители: доцент Макасеева О.Н.
Рецензент: доцент Шуляк Т.Л.
Ó Могилевский государственный университет продовольствия
Содержание
Основной структурной единицей белков являются a-аминокислоты. В природе встречается примерно 300 аминокислот. В составе белков найдено 20 различных a-аминокислот (одна из них – пролин, является не амино-, а иминокислотой). Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.
a-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у a-углеродного атома замещен на аминогруппу (–NН2), например:
Различаются аминокислоты по строению и свойствам радикала R. Радикал может представлять остатки жирных кислот, ароматические кольца, гетероциклы. Благодаря этому каждая аминокислота наделена специфическими свойствами, определяющими химические, физические свойства и физиологические функции белков в организме.
Именно благодаря радикалам аминокислот, белки обладают рядом уникальных функций, не свойственных другим биополимером, и обладают химической индивидуальностью.
Значительно реже в живых организмах встречаются аминокислоты с b- или g-положением аминогруппы, например:
В молекулах всех природных аминокислот ( за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома. Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Причем, при прохождении через них поляризованного луча происходит поворот плоскости поляризации либо в право (+), либо влево (–). По расположению атомов и атомных группировок в пространстве относительно асимметрического атома различают L- и D-стереоизомеры аминокислот. Знак и величина оптического вращения зависят от природы боковой цепи аминокислот (R-группы).
Число возможных стереоизомеров ровно 2n, где n – число асимметрических атомов углерода. У глицина n = 0, у треонина n = 2. Все остальные 17 белковых аминокислот содержат по одному асимметрическому атому углерода, они могут существовать в виде двух оптических изомеров.
В качестве стандарта при определении L и D-конфигураций аминокислот используется конфигурация стереоизомеров глицеринового альдегида.
Расположение в проекционной формуле Фишера NH2-группы слева соответствуют L-конфигурации, а справа – D-конфигурации.
Следует отметить, что буквы L и D означают принадлежность того или иного вещества по своей стереохимической конфигурации к L или D ряду, независимо от направленности вращения.
В
составе белков обнаруживаются только L-изомеры аминокислот.
D-формы аминокислот в природе встречаются
редко и обнаружены лишь в составе белков
клеточной стенки (гликопротеинов) некоторых
бактерий и в пептидных антибиотиках (грамицидин,
актиномицин и т.д.). L-формы хорошо усваиваются растениями
и животными и легко включаются в обменные
процессы. D-формы не ассимилируются этими организмами,
а иногда даже ингибируют процессы обмена.
Это объясняется тем, что ферментативные
системы организмов специфически приспособлены
к L формам аминокислот.
L и D формы аминокислот оказывают различное физиологическое воздействие на организм человека – различаются по вкусу: D-изомеры сладкие, L-формы горькие или безвкусные.
Взаимопревращение D и L-энатиомеров называется рацемизацией. Превращение D Û L – это один из метаболических процессов в живых организмах, причем равновесие этого метаболического процесса сильно смещено в сторону образования L-формы. Когда метаболические процессы после смерти организма прекращаются, процесс D Û L продолжается самопроизвольно с очень малой скоростью, переводя для каждой аминокислоты к соотношению D/L-энантиомеров, характерному для неметаболического равновесия. Для достижения такого равновесия могут потребоваться десятки тысяч лет. Новый метод определения геологического возраста образца основан на измерении соотношения D/L-энантиомеров аспарагиновой кислоты в образцах окаменелых костей. Результаты, полученные методом D /L-датирования, хорошо дополняют другие данные, полученные, например, радиоуглеродным методом.
Кроме 20 стандартных аминокислот встречающихся почти во всех белках, существуют еще нестандартные аминокислоты, являющиеся компонентами лишь некоторых типов белков – эти аминокислоты называют еще модифицированными. Около 150 из них уже выделены. Эти аминокислоты образуются после завершения синтеза белка в рибосоме клеток путем посттрансляционной химической модификации.
Один из примеров особенно важной
модификации – окисление двух-
Таким путем образуется одна из важнейших окислительно-востановительных систем живых организмов. В больших количествах цистин содержится в белках злаковых – клейковине, в белках волос, рогов.
Другие примеры аминокислотной модификации-гидроксипролин и гидроксилизин, которые входят в состав коллагена-основного белка соединительной ткани животных.
В состав белка протромбина (белок
свертывания крови) входит
g-карбоксиглутаминовая кислота,
а в ферменте глутатионпероксидазе открыт
селеноцистеин, в котором ( S ) сера заменена
на ( Se ) селен.
Существует несколько видов
классификаций аминокислот
В основу одной из классификаций положено химическое строение радикалов аминокислот. Различают аминокислоты:
2. Гидроксилсодержащие – серин, треонин:
3. Серосодержащие – цистеин, метионин:
4. Ароматические – фенилаланин, тирозин, триптофан:
5. С анионобразующими группами в боковых цепях-аспарагиновая и глутаминовая кислоты:
6. и амиды-аспарагиновой и
7. Основные – аргинин, гистидин, лизин.
8. Иминокислота – пролин.
Второй вид классификации основан на полярности R-групп аминокислот. Различают полярные и неполярные аминокислоты. У неполярных в радикале есть неполярные связи С–С, С–Н, таких аминокислот восемь: аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин.
Все остальные аминокислоты относятся к полярным (в R-группе есть полярные связи С–О, С–N, –ОН, S–H). Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).
Аминокислоты классифицируют и
на основе ионных свойств R-групп
(таблица 1). Кислые (при рН=7 R-группа может
нести отрицательный заряд) это аспарагиновая,
глутаминовая кислоты, цистеин и тирозин.
Основные( при рН =7
R-группа может нести положительный заряд)
– это аргинин, лизин, гистидин.
Все остальные аминокислоты относятся к нейтральным (группа R незаряжена).
Таблица 1 – Классификация аминокислот
на основе полярности
R-групп.
Аминокислоты |
Принятые однобуквенные обозначения и символы |
Изоэлектрическая точка, рI |
Среднее содержание в белках,% | ||
Англ. |
символ |
Русск. | |||
1. Неполярные Глицин Аланин Валин Лейцин Изолейцин Пролин Фенилаланин Триптофан 2. Полярные, Серин Треонин Цистеин Метионин Аспарагин Глутамин
3. Отрицательно заряженные Тирозин Аспарагиновая к-та Глутаминовая к-та 4. Положительно
заряженные Лизин Аргинин Гистидин |
GLy ALa VaL Leu Lie Pro Phe Trp
Ser Thr Cys Met Asn GLn
Tyr Asp GLy
Lys Arg His |
G A V L I P F W
S T C M N Q
Y D E
K R N |
Гли Ала Вал Лей Иле Про Фен Трп
Сер Тре Цис Мет Асн Глн
Тир Асп Глу
Лиз Арг Гис |
5,97 6,02 5,97 5,97 5,97 6,10 5,98 5,88
5,68 6,53 5,02 5,75 5,41 5,65
5,65 2,97 3,22
9,74 10,76 7,59 |
7,5 9,0 6,9 7,5 4,6 4,6 3,5 1,1
7,1 6,0 2,8 1,7 4,4 3,9
3,5 5,5 6,2
7,0 4,7 2,1 |
По числу аминных и
По способности
Незаменимые аминокислоты не могут
синтезироваться в организме
человека и животных они обязательно
должны поступать вместе с пщей. Абсолютно
незаменимых аминокислот восемь: валин,
лейцин,изолейцин,треонин,
Частично незаменимые-
Заменимые аминокислоты синтезируются в организме человека в достаточном количестве из других соединений. Растения могут синтезировать все аминокислоты.
Кислотно-основные свойства аминокислот связаны с наличием в их структуре двух ионизируемых групп-карбоксильной и аминогруппы, поэтому амнокислоты могут проявлять свойства как кислот, так и оснований, т.е. они являются амфотерными соединениями. В кристаллическом состоянии и в водных растворах a-аминокислоты существуют в виде биполярных ионов, называемых также цвиттерионами. Ионное строение обуславливает некоторые особенности свойств a-аминокислот: высокую температуру плавления (200-300°С), нелетучесть, растворимость в воде и нерастворимость в неполярных органических растворителях. С растворимостью аминокислот в воде связана их всасываемость и транспорт в организме. Ионизация молекул аминокислот зависит от рН раствора. Для моноаминомонокарбоновых кислот процесс диссоциации имеет следующий вид:
В сильно кислых растворах аминокислоты присутствуют в виде положительных ионов, а в щелочных – в виде отрицательных.
Кислотно-основные свойства аминокислот можно объяснить исходя из теории кислот и оснований Бренстеда-Лоури. Полностью протонированная a-аминокислота (катионная форма) с позиции теории Бренстеда является двухосновной кислотой, содержащей две кислотные группы:недиссоциированную карбоксильную группу (– СООН) и протонированную аминогруппу (NН3), которые характеризуются соответствующими значениями рКa1 и рКa2.
Величины рК для аминокислот определяют по кривым титрования. Рассмотрим кривую титрования аланина (рис. 1).