Автор работы: Пользователь скрыл имя, 26 Ноября 2013 в 12:41, курсовая работа
Физико-химические методы анализа находят широкое применение при исследовании свойств и состава различных веществ, в том числе твердых, газообразных и жидких. Физико химические методы анализа в практической аналитической химии представлены в большом разнообразии.Аналитическая химия – наука о способах идентификации химических соединений, о принципах и методах определения химического состава веществ и их структуры. Особую актуальность аналитическая химия приобрела в настоящее время, поскольку основным фактором неблагоприятного антропогенного воздействия на природу являются химические загрязнения. Определение их концентрации в различных природных объектах становится важнейшей задачей.
Введение
Оптические методы анализа
Фотометрический метод анализа
Эмиссионный спектральный анализ
Атомно- абсорбционный анализ
Нефелометрический и турбидиметрический анализ
Люминесцентный анализ
Электрохимические методы анализа
Потенциометрический метод анализа
Кондуктометрический метод анализа
Кулонометрический метод анализа
Вольтамперометрический метод анализа
Хроматографические методы анализа
Литература
Определение точки эквивалентности
можно проводить
В кулонометрическом
титровании используются химические реакции
различных типов: кислотно-основные,
окислительно-восстановительные
Установка для кулонометрического титрования при постоянной силе тока содержит следующие основные узлы: 1) источник постоянного тока; 2) устройство для определения количества электричества; 3) электрическую ячейку с генераторным электродом; 4) индикаторную систему для определения конца титрования; 5) хронометр для определения продолжительности электролиза.
Индикаторная система служит для индикации конечной точки титрования (к.т.т.). Наиболее часто для этой цели используют амперометрический и потенциометрический методы. В ячейку вводят индикаторные электроды: два платиновых электрода (при амперометрической индикации) или платиновый и каломельный электроды (при потенциометрической индикации). Силу тока или разность потенциалов измеряют соответствующими приборами, входящими в комплект установки для титрования (блок индикации). Иногда для определения к.т.т. используют фотометрический метод, помещая ячейку в кюветное отделение фотоэлектроколориметра и измеряя светопоглощение в ходе титрования. В отдельных случаях конец титрования устанавливают визуально, например, по появлению окраски раствора, вызванной избытком титранта. Приборостроительная промышленность серийно выпускает кулонометрические титраторы, в которых для индикации конечной точки титрования используется амперометрический или потенциометрический методы.
Решение типовых задач по теме "Кулонометрический анализ"
Задача 1. На полное восстановление цинка в кулонометрии понадобилось 26 мин при силе тока 100 мА. Определить содержание (г) и концентрацию (моль/л) цинка в растворе, если на кулонометрический анализ было взято 10 мл раствора.
Решение: Рассчитываем содержание (г) цинка по формуле:
m = (It / 96500) . M /n; mZn2+ = (0,1 . 26 . 60 / 96500) . 65,38 / 2 = 0,05285 г в 10 мл раствора, тогда в 1 л будет содержатся 5,285 г/л или сZn2+ = m / М = 5,285 / 65,38 = 0,0808 моль/л.
Ответ: mZn2+ =0,05285 г; сZn2+ = 0,0808 моль/л.
Задача 2. На кулонометрическое титрование 10 мл раствора Na2S2O3 иодом, генерируемым в кулонометрической ячейке, понадобилось 22 мин при силе тока 300 мА. Определить количество затраченного электричества и молярную концентрацию эквивалента раствора Na2S2O3.
Решение: Рассчитываем количество электричества: Q = 0,3 . 22 . 60 = 396 Кл и массу (г) Na2S2O3 = 158 . 396 / (2. 96500) = 0,3242 г в 10 мл раствора, а в 1 л будет содержатся 32,42 г/л.
Э(Na2S2O3) = 79; С = m / Э; С(Na2S2O3) = 32,42 / 79 = 0,4104 моль-экв/л.
Ответ: Q= 396 Кл; С(Na2S2O3) = 0,4104 моль-экв/л.
Вольтамперометрический метод анализа
Основные законы и формулы
Методы анализа, основанные на расшифровке поляризационных кривых (вольтамперограмм), получаемых в электролитической ячейке с поляризующимся индикаторным электродом и неполяризующимся электродом сравнения, называют вольтамперометрическим. Вольтамперограмма позволяет одновременно получить качественную и количественную информацию о веществах, восстанавливающихся или окисляющихся на микроэлектроде (деполяризаторах), а также о характере электродного процесса.
В качестве поляризующегося микроэлектрода часто применяют ртутный капельный электрод, а сам метод называют в этом случае полярографией, следуя термину, который предложил Я. Гейровский, разработавший этот метод в 1922 г.
При небольшом потенциале катода сила тока сначала медленно увеличивается с возрастанием потенциала – это так называемый остаточный ток, его значение имеет порядок 10-7 А. По достижении потенциала восстановления на катоде начинается разряд ионов, определяемый диффузией, и сила тока резко возрастает, а затем становится постоянной – это предельный диффузионный ток.
Принципиальная схема полярографической установки: анализируемый раствор 1 находится в электролизере 2, на дне которого имеется слой ртути 3, являющийся анодом. Катодом служит ртутный капельный электрод 4, соединенный с резервауром ртути 5. Через электролизер протекает ток, напряжение которого, подаваемое на электроды, можно плавно менять с помощью реохорда или делителя напряжения 7 и измерять при этом гальванометром 6 силу тока, проходящего через раствор.
Зависимость тока I от приложенного напряжения Е при обратимом электродном процессе передается уравнением полярографической волны:
Е = Е1/2 + (R T / n F) ln ( Id – I ) / I, (1)
Где Е1/2 – потенциал полуволны; Id – диффузионный ток.
При I = Id / 2 уравнение (1) переходит в
Е = Е1/2 .(2)
Это соотношение показывает независимость потенциала полуволны от тока и, следовательно, от концентрации восстанавливающегося иона. Потенциал полуволны является, таким образом, качественной характеристикой иона в растворе данного фонового электролита, и определение потенциала полуволны составляет основу качественного полярографического анализа.
Количественный
Id = 605 z D1/2 m 2/3 t1/6 c (3)
Где z - заряд иона; D – коэффициент диффузии; m – масса ртути, вытекающей из капилляра за 1 с, мг; t – время образования капли (периода капания), с.
В практике количественного полярографического анализа коэффициент пропорциональности межу концентрацией вещества и силой диффузионного тока обычно устанавливают с помощью стандартных растворов. При постоянных условиях полярографирования D, m, и t постоянны, поэтому уравнение (3) переходит в
Id = k c . (4)
При анализе некоторых систем, для которых применимость уравнения (4) установлена вполне надежно, часто используют менее трудоемкий метод стандартных растворов. Так же широко распространен в количественной полярографии и метод добавок.
Особое место в
Амперометрическое титрование представляет собой разновидность полярографического метода анализа. Амперометрическое титрование проводится следующим образом: часть исследуемого раствора помещают в электролизер, снабженный индикаторным электродом и электродом сравнения. Между электродами устанавливают напряжение на 0,3 – 0,5 В больше потенциала полуволны (или редокс-потенциала) исследуемого вещества и приступают к титрованию. В процессе титрования отмечают показания гальванометра, на основании результатов строят кривую амперометрического титрования, откладывая на оси ординат показания гальванометра, а на оси абсцисс – объем титранта. Точка перегиба соответствует объему титранта в точке эквивалентности. Содержание определяемого вещества вычисляют по объему титранта, израсходованному в точке эквивалентности. Концентрация титранта должна превышать концентрацию раствора титруемого вещества в 10-15 раз.
При амперометрическом титровании индикаторными электродами могут быть ртутный капельный электрод, платиновый вращающийся и другие электроды. В качестве электродов сравнения применяют насыщенный каломельный, хлорсеребряный и другие электроды.
Вид кривой амперометрического
титрования будет зависеть от того,
какой компонент реакции
Амперометрическое титрование
следует проводить при
Полярографическая установка служит для получения полярограмм, т.е. кривых зависимости силы тока, протекающего через раствор, от потенциала, приложенного к рабочему электроду. Прибор состоит из трех основных узлов: электролитической ячейки с рабочим электродом и электродом сравнения, источника напряжения для поляризации рабочего электрода и устройства для регистрации тока. В качестве неполяризующегося электрода сравнения используется слой ртути на дне ячейки. Применяются также и другие электроды сравнения: каломельный, ртутно-сульфатный, хлорсеребряный и др. Рабочим электродом может быть также твердый микроэлектрод, изготавливаемый из платины, золота, графита и других материалов.
Установка для амперометрического титрования может быть собрана на основе любого полярографа. Обычно для этой цели используется самая простая полярографическая установка. При этом рабочим может быть как ртутный капающий, так и твердый микроэлектрод. В качестве источников тока могут применяться аккумуляторные батареи и различные выпрямительные устройства. В комплект установки для титрования входят также микробюретка и магнитная мешалка.
Решение типовых задач
по теме «Вольтамперометрический
Задача 1. При полярографировании стандартных растворов соли цинка определено:
СZn2+ , % 0,10 0,20 0,30 0,40 0,50
h, мм 8,0 14,0 22,0 28,0 37,0
Вычислите содержание цинка в анализируемом растворе методом калибровочного графика, если высота полярографической волны (h) раствора 25,0 мм.
Решение: Строим график зависимости высоты полярографической волны h от содержания цинка (%). По графику находим содержание цинка, которое составляет 0,35 %.
Ответ: 0,35%.
Задача 2. Определите содержание (г) Fe2+ в навеске исследуемого вещества, если после проведения амперометрического титрования раствором 0,01 моль-экв/л K2Cr2O7 с титром по Fe2+ 2,8 . 10-4 г/мл получены следующие результаты:
VK2Cr2O7, мл 0,00 0,20 0,30 0,40 0,50 0,60 0,70 0,80
I, мкА 120 80 60 40 20 10 10 10
Решение: Находим точку эквивалентности по графику амперометрического титрования. Объем раствора K2Cr2O7 в точке эквивалентности 0,55 мл. Рассчитываем содержание Fe2+ в анализируемой навеске исследуемого вещества:
mFe2+ = VK2Cr2O7 . TK2Cr2O7/Fe2+ = 0,55 . 2,8 . 10-4 = 1,54 . 10-4 г.
Ответ: 1,54 . 10-4 г.
ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА
Хроматография – процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Разделение сложных смесей хроматографическим способом основано на различной сорбируемости компонентов смеси. В процессе хроматографирования так называемая подвижная фаза (элюент), содержащая анализируемую пробу, перемещается через неподвижную фазу. Обычно неподвижная фаза представляет собой вещество с развитой поверхностью, а подвижная – поток газа или жидкости, фильтрующейся через слой сорбента. При этом происходит многократное повторение актов сорбции – десорбции, что является характерной особенностью хроматографического процесса и обуславливает эффективность хроматографического разделения.
Качественный хроматографический анализ, т.е. индетификация вещества по его хроматограмме, может быть выполнен сравнением хроматограических характеристик, чаще всего удерживаемого объема (т.е. объема подвижной фазы, пропущенной через колонку от начала ввода смеси до появления данного компонента на выходе из колонки), найденных при определенных условиях для компонентов анализируемой смеси и для эталона.
Количественный хроматографический анализ проводят обычно на хроматографе. Метод основан на измерении различных параметров хроматографического пика, зависящих от концентрации хроматографируемых веществ – высоты, ширины, площади и удерживаемого объема или произведения удерживаемого объема на высоту пика.
В количественной газовой хроматографии применяют методы абсолютной градуировки и внутренней нормализации, или нормировки. Используется также метод внутреннего стандарта. При абсолютной градуировке экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят градуировочные графики или рассчитывают соответствующие коэффициенты. Далее определяют те же характеристики пиков в анализируемой смеси, и по градуировочному графику находят концентрацию анализируемого вещества. Этот простой и точный метод является основным при определении микропримесей.
Информация о работе Инструментальные методы химического анализа