Контрольная работа по дисциплине "Аналитическая химия"

Автор работы: Пользователь скрыл имя, 08 Мая 2014 в 16:03, контрольная работа

Краткое описание

1. Охарактеризуйте прямые методы фотометрического анализа: метод добавок и сравнения.
2. Какое явление называют тушением люминесценции? Укажите его виды.
3. Дайте характеристику метода тонкослойной хроматографии.

Вложенные файлы: 1 файл

Аналитическая химия (Автосохраненный).docx

— 170.16 Кб (Скачать файл)

Аналитическая химия

Вариант 8

Теоретическая часть

 

  1. Охарактеризуйте прямые методы фотометрического анализа: метод добавок и сравнения.

 

Ответ: Фотометрический метод анализа основан на способности определяемого вещества поглощать электромагнитное излучение оптического диапазона. Концентрацию поглощающего вещества определяют, измеряя интенсивность поглощения. Поглощение при определенной длине волны является информацией о качественном и количественном составе определяемого вещества и составляет аналитический сигнал.

Фотометрический анализ относится к молекулярному абсорбционному анализу, т. е. анализу основанному на поглощении света молекулами анализируемого вещества и сложными ионами в ультрафиолетовой (УФ), видимой и инфракрасной (ИК) областях спектра.

В настоящих указаниях рассматриваются метода анализа, основанные на избирательном поглощении электромагнитного излучения в видимой и ультрафиолетовой областях спектра: фотоколориметрия и спектрофотометрия.

Спектрофотометрический метод анализа — основан на поглощении монохроматического излучения, т. е. излучения с одной длиной волны в видимой и УФ областях спектра.

Фотоколориметрический метод анализа — основан на поглощении полихроматического (немонохроматического) излучения, т. е. пучка лучей с близкими длинами волны в видимой области спектра. Фотоколориметрию используют в основном для анализа окрашенных растворов.

Оба метода основаны на общем принципе — пропорциональной зависимости между светопоглощением и концентрацией определяемых веществ.

С помощью фотометрического анализа можно определять малые количества вещества, например, содержание примесей не ниже 5 ´ 10–5 % (спектрофометрически) и 1 ´ 10–4 % (фотоколориметрически) при погрешности определения 1—3 %.

Концентрация исследуемого вещества может быть определена методом фотометрии в том случае, если в спектре поглощения раствора этого вещества имеются ясно выраженные полосы поглощения в УФ и видимой областях спектра. В основе количественного определения лежит закон Бугера – Ламберта - Бера, который устанавливает прямопропорциональную зависимость между оптической плотностью и концентрацией вещества в исследуемом растворе. С помощью фотометрии можно проводить анализ, как индивидуальных веществ, так и их смесей.

Метод добавок представляет собой разновидность метода сравнения. Определение концентрации раствора этим методом основано на сравнении оптической плотности исследуемого раствора и этого же раствора с добавкой известного количества определяемого вещества.

Метод добавок применяют для устранения мешающего влияния посторонних примесей и чаще всего, для оценки правильности методики фотометрического анализа. Этот метод позволяет создать одинаковые условия для фотометрирования исследуемого и стандартного (с добавкой) окрашенных растворов, поэтому его целесообразно применять для определения малых количеств различных элементов и веществ в присутствии больших количеств посторонних веществ (воздух рабочей зоны, атмосферный воздух, вода, почва, биосреды).

Метод добавок требует обязательного соблюдения основного закона светопоглощения.

Неизвестную концентрацию вещества Сх находят либо графическим способом, либо расчетным методом по формуле:

Сх = (а+Ах) / (Ах+а + Ах);                                              (1.1.)

Где, a –

добавка стандартного вещества, мкг;

   Ах –

оптическая плотность измеряемого раствора;

 Ах + а –

оптическая плотность измеряемого раствора с известной добавкой стандартного вещества а.


 

 

Наибольшая прецизионность результатов определения с использованием метода добавок достигается при Ах + а = 2Ах.

Метод добавок обычно применяют для устранения мешающего действия посторонних примесей, а также в ряде случаев для оценки правильности методики определений. Этот метод позволяет создать одинаковые условия для фотометрирования исследуемого раствора и раствора с добавкой, поэтому его целесообразно применять для определения небольших количеств различных соединений в присутствии больших количеств посторонних веществ. Метод добавок требует обязательного соблюдения основного закона светопоглощения.

При определении неизвестной концентрации вещества в растворе графическим способом (рис. 1.) на оси ординат откладывают значение оптической плотности исследуемого раствора, Ах, а на оси абсцисс концентрации добавляемого вещества в растворе. Из точек Са1 и Са2, на оси абсцисс проводят перпендикуляры, на которых откладывают соответствующие значения оптической плотности Ах+а1 и Ах+а2 растворов с добавками а1 и а2. Через полученные 3 точки Ах, Ах + а1; Ах + а2 проводят прямую линию до пересечения ее с продолжением оси абсцисс в точке Сх. Абсолютное значение отрезка ОСх выражает неизвестную концентрацию исследуемого раствора.

Рис. 1. Графическое определение концентрации раствора методом добавок

 

Рассмотрим расчет неизвестной концентрации вещества по методу сравнения.

При соблюдении основного закона светопоглощения и постоянной толщине слоя измеряемого раствора, отношение оптических плотностей исследуемого раствора и исследуемого раствора с добавкой, будет равно отношению их концентраций:

Ах / Ах + а = Сх / (Сх + Са);                                      (1.2)

Откуда,

Сх = (Са*Ах) /(Ах + а – Ах);                                       (1.3.)

Где, Ах –

оптическая плотность исследуемого раствора;

  А х + а –

оптическая плотность исследуемого раствора с добавкой;

     Са –

концентрация добавки в исследуемом растворе, мкг.


 

Добавки следует брать в таких количествах, чтобы не происходило уменьшения точности, минимальная разность Ах + а – Ах должна быть не менее 0,1.

 

  1. Какое явление называют тушением люминесценции? Укажите его виды.

 

Ответ: ЛЮМИНЕСЦЕ́НЦИЯ (от лат. lumen, родительный падеж luminis — свет и -escent — суффикс, означающий слабое действие), свечение, избыточное над тепловым излучением тела и продолжающееся после прекращения возбуждения в течение времени, значительно превышающего период световой волны (по определению С. И. Вавилова). Т. е. люминесценция — процесс неравновесный и не относится к тепловому равновесному излучению тел. Но люминесценция не относится и к таким практически безинерционным неравновесным процессам, как отражение и рассеяние света и тормозное излучение. Для наблюдения люминесценции вещество необходимо вывести из состояния термодинамического равновесия, т. е. возбудить. При люминесценции акты возбуждения и излучения света разделены во времени промежуточными процессами, что обусловливает относительно длительное время существования свечения вещества после прекращения возбуждения.

Тушение люминесценции – уменьшение выхода люминесценции, вызываемое различными причинами. Тушение люминесценции может происходить при добавлении в люминофор посторонних примесей, при увеличении в нём концентрации самого люминесцирующего вещества (концентрационное тушение), при нагревании, под действием инфракрасного света, электрического поля и др. воздействий на люминесцирующее вещество.

В результате действия этих факторов относительно возрастает вероятность безызлучательных переходов люминесцирующих молекул из возбуждённого состояния в основное по сравнению с вероятностью их излучательных переходов. В случае рекомбинационной люминесценции кристаллофосфоров тушение люминесценции объясняется безызлучательной рекомбинацией носителей заряда с центрами тушения, которыми могут служить дефекты кристаллической решётки или атомы примеси.

Отличие выхода люминесценции от единицы обусловлено такими процессами тушения – различают концентрационное, внутреннее, температурное, внешнее статическое и динамическое тушение.

- Внутреннее тушение обусловлено  безызлучательными переходами внутренней конверсии и колебательной релаксации. Наиболее ярко оно проявляется в симметричных структурах с большим числом сопряженных связей, конформационно нежёстких структурах.

- Температурное тушение  является разновидностью внутреннего. Под влиянием температуры способность молекулы деформироваться растёт, и, как следствие, растёт вероятность безызлучательных переходов.

- Внешнее статическое  тушение основано на взаимодействии  люминесцирующего соединения с  другой молекулой и образованием  неизлучающего продукта.

- Динамическое тушение  наблюдается, когда возбуждённая  молекула люминофора вступает  в постороннюю реакцию и теряет  свои свойства.  
Концентрационное тушение – результат поглощения молекулами вещества собственного излучения.

В широком смысле слова под тушением возбужденных состояний понимают любые процессы их дезактивации, являющиеся результатом взаимодействия возбужденных молекул с компонентами системы. Выход люминесценции очень чувствителен к различным внутримолекулярным и межмолекулярным взаимодействиям, которые вызывают его уменьшение и приводят к развитию процессов тушения люминесценции. К числу наиболее активных тушителей люминесценции относятся:

- тяжелые анионы и катионы I− , Br− , Cs+ , Cu2+ (при этом облегчается S1 → T1 переход);

- парамагнитные ионы и  молекулы   O2, Mn2+ , нитроксильные радикалы;

- молекулы растворителя. Наибольшим тушащим действием  обладают обычно полярные растворители, такие, как вода;

- акцепторы электронной  энергии возбуждения.

Согласно С. И. Вавилову, тушитель может быть статическим (тушение первого рода) и динамическим (тушение второго рода).

Тушение первого рода. К тушению первого рода были отнесены все те процессы, в которых уменьшение выхода люминесценции не сопровождается уменьшением средней длительности возбуждённого состояния. Тушение первого рода вызывается быстрыми химическими или физико-химическими процессами в возбужденных молекулах исследуемого вещества. В этом случае часть энергии света, поглощенного молекулами, расходуется на их диссоциацию, ионизацию или на увеличение энергии их колебания и вращения. Такие процессы развиваются с большой скоростью и происходят за время, соизмеримое со временем собственных колебаний молекул (~10-13÷10-14 с), что значительно меньше времени жизни молекул в возбуждённом состоянии, 10-9 с. Статическое тушение связано также с образованием нефлуоресцирующих комплексов НК флуоресцирующих молекул Ф с молекулами тушителя Q:

;                                                     (2.1.)

Отношение концентраций свободного флуоресцирующего и связанного нефлуоресцирующего вещества [Ф]/[HK] может быть найдено из уравнения равновесия:

;                                                 (2.2.)

Где, ДК - константа диссоциации комплекса. Если поглощение вещества Ф и комплекса не различаются, то отношение квантовых выходов люминесценции вещества Ф в присутствии и отсутствии комплекса будет равно:

;                                        (2.3.)

Используя предыдущее уравнение, получаем:

;                                                (2.4.)

Если поглощение комплекса отлично от поглощения флуоресцирующего вещества, то уравнение (2.3.) не соблюдается. Однако при низких оптических плотностях растворов будет справедливо отношение:

;                                    (2.5.)

Частным случаем статического тушения является так называемое концентрационное тушение, которое связано с образованием нефлуоресцирующих димеров и более крупных ассоциатов молекул при высокой концентрации флуоресцирующего вещества:

Информация о работе Контрольная работа по дисциплине "Аналитическая химия"