Мышьяк

Автор работы: Пользователь скрыл имя, 17 Июня 2013 в 00:35, лекция

Краткое описание

Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Соединения же мышьяка, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны.
Мышьяк содержится во всех объектах биосферы (в земной коре – 2 мг/кг, в морской воде – 5 мкг/кг).
Известными источниками загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы. Мышьяк используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и т.д

Вложенные файлы: 1 файл

Безопасность .doc

— 273.50 Кб (Скачать файл)


Алюминий. Первые данные о токсичности алюминия были получены в 70–х годах прошлого века, и это явилось неожиданностью для человечества. Будучи третьим, по распространенности элементом земной коры и обладая ценными качествами, Al нашел широкое применение в технике и быту. Поставщиками алюминия в организм человека является алюминиевая посуда, если она контактирует с кислой или щелочной средой, вода которая обогащается ионами Al3+ при обработке ее сульфатом алюминия на водоочистительных станциях.

Существенную роль в загрязнении окружающей среды ионами Al3+ играют и кислотные дожди. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противогеморроидальными, противоартритными, понижающими кислотность желудочного сока. Как буферную добавку вводят гидроксид алюминия и в губную помаду. Среди пищевых продуктов наивысшей концентрацией алюминия (до 20 мг/г) обладает чай.

Поступающие в организм человека ионы Al3+ в форме нерастворимого фосфата выводятся с фекалиями, частично всасываются в кровь и выводятся почками. При нарушении деятельности почек происходит накапливание алюминия, которое приводит к нарушению метаболизма Ca, Mg, P, F, сопровождающееся ростом хрупкости костей, развитием различных форм анемии. Кроме того, были обнаружены: нарушение речи, ориентации, провалы в памяти, нарушение ориентации и т.п. Все это позволяет приблизить «безобидный», считавшийся нетоксичным до недавнего времени алюминий к «мрачной тройке» супертоксикантов: ртуть, свинец, кадмий.

Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Соединения же мышьяка, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны.

Мышьяк содержится во всех объектах биосферы (в земной коре – 2 мг/кг, в морской воде – 5 мкг/кг).

Известными источниками  загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы. Мышьяк используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и т.д.

Нормальный уровень  содержания мышьяка в продуктах  питания не должен превышать 1 мг/кг. Так, например, фоновое содержание мышьяка (мг/кг): в овощах и фруктах 0,01-0,2; в зерновых 0,006-1,2; в говядине 0,005-0,05; в печени 2,0; яйцах 0,003-0,03.

Повышенное содержание мышьяка отмечается в рыбе и других гидробионтах, в частности в ракообразных и моллюсках. По данным ФАО/ВОЗ, в организм человека с суточным рационом поступает в среднем 0,05 – 0,45мг мышьяка. ДСД – 0,05 мг/кг массы тела. В зависимости от дозы мышьяк может вызывать острое и хроническое отравление. Разовая доза мышьяка 30 мг – смертельна для человека. Механизм токсического действия мышьяка связан с блокированием SH – групп белков и ферментов, выполняющих в организме самые разнообразные функции.

Медь. Содержание в земной коре составляет 4,5 мг/кг, морской воде – 1-25 мкг/кг, в организме взрослого человека – около 100 мг/кг.

Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность – 4-5 мг. Дефицит  меди приводит к анемии, недостаточности  роста, ряду других заболеваний, в отдельных случаях – к смертельному исходу.

В организме присутствуют механизмы биотрансформации меди. При  длительном воздействии высоких  доз меди наступает «поломка»  механизмов адаптации, переходящая  в интоксикацию и специфическое  заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тары.

Цинк. Содержится в земной коре в количестве 65 мг/кг, морской воде – 9-21 мкг/кг, организме взрослого человека – 1,4-2,3 г/кг.

Цинк как кофактор входит в состав около 80 ферментов, участвуя тем самым в многочисленных реакциях обмена веществ. Типичными симптомами недостаточности цинка являются замедление роста у детей, половой инфантилизм у подростков, нарушения вкуса (гипогезия) и обоняния (гипосмия) и др.

Суточная потребность в цинке взрослого человека составляет 15 мг, при беременности и лактации – 20-25 мг. Цинк, содержащийся в растительных продуктах, менее доступен для организма, поскольку фитин растений и овощей связывает цинк (10% усвояемости). Цинк из продуктов животного происхождения усваивается на 40%. Содержание цинка в пищевых продуктах составляет, мг/кг: мясо – 20-40, рыбопродукты – 15-30, устрицы – 60-1000, яйца – 15-20, фрукты и овощи – 5, картофель, морковь – около 10, орехи, зерновые – 25-30, мука высшего сорта – 5-8, молоко – 2-6 мг/л. В суточном рационе взрослого человека содержание цинка составляет 13-25 мг. Цинк и его соединения малотоксичны. Содержание цинка в воде в концентрации 40 мг/л безвредно для человека.

Вместе с тем возможны случаи интоксикации при нарушении использования пестицидов, небрежного терапевтического применения препаратов цинка. Признаками интоксикации являются тошнота, рвота, боль в животе, диарея. Отмечено, что цинк в присутствии сопутствующих мышьяка, кадмия, марганца, свинца в воздухе на цинковых предприятиях вызывает у рабочих «металлургическую» лихорадку.

Известны случаи отравлений пищей или напитками, хранившимися в железной оцинкованной посуде. Такие  продукты содержали 200-600 мг/кг и более  цинка. В этой связи приготовление и хранение пищевых продуктов в оцинкованной посуде запрещено. ПДК цинка в питьевой воде – 5 мг/л, для водоемов рыбохозяйственного назначения – 0,01 мг/л.

Олово. Необходимость олово для организма человека не доказана. Вместе с тем пищевые продукты содержат этот элемент до 1-2 мг/кг, организм взрослого человека – около 17 мг олова, что указывает на возможность его участия в обменных процессах.

Количество олова в  земной коре относительно невелико. При  поступлении олова с пищей  всасывается около 1%. Олово выводится из организма с мочой и желчью.

Неорганические соединения олова малотоксичны, органические –  более токсичны, находят применение в сельском хозяйстве в качестве фунгицидов, в химической промышленности – как стабилизаторы поливинилхлоридных полимеров. Основным источником загрязнения пищевых продуктов оловом являются консервные банки, фляги, железные и медные кухонные котлы, другая тара и оборудование, которые изготавливаются с применением лужения и гальванизации. Активность перехода олова в пищевой продукт возрастает при температуре хранения выше 200С, высоком содержании в продукте органических кислот, нитратов и окислителей, которые усиливают растворимость олова.

Опасность отравления оловом увеличивается при постоянном присутствии  его спутника – свинца. Не исключено взаимодействие олова с отдельными веществами пищи и образование более токсичных органических соединений. Повышенная концентрация олова в продуктах придает им неприятный металлический привкус, изменяет цвет. Имеются данные, что токсичная доза олова при его однократном поступлении – 5-7 мг/кг массы тела, т.е. 300-500 мг. Отравление оловом может вызвать признаки острого гастрита (тошнота, рвота и др.), отрицательно влияет на активность пищеварительных ферментов.

Действенной мерой предупреждения загрязнения пищи оловом является покрытие внутренней поверхности тары и оборудования стойким, гигиенически безопасным лаком или полимерным материалом, соблюдение сроков хранения баночных консервов, особенно продуктов детского питания, использование для некоторых консервов (в зависимости от рецептуры и физико-химических свойств) стеклянной тары.

Железо. Занимает четвертое место среди наиболее распространенных в земной коре элементов (5% земной коры по массе).

Этот элемент необходим  для жизнедеятельности как растительного, так и животного организма. У растений дефицит железа проявляется в желтизне листьев и называется хлорозом, у человека вызывает железодефицитную анемию, поскольку двухвалентное железо – кофактор в гемсодержащих ферментах, участвует в образовании гемоглобина. Железо выполняет целый ряд других жизненно важных функций: перенос кислорода, образование эритроцитов, обеспечивает активность негемовых ферментов – альдолазы, триптофаноксигеназы и т.д.

В организме взрослого  человека содержится около 4,5 г железа. Содержание железа в пищевых продуктах колеблется в пределах 0,07-4 мг/100г. Основным источником железа в питании являются печень, почки, бобовые культуры (6-20 мг/100 г). потребность взрослого человека в железе составляет около 14 мг/сут, у женщин в период беременности и лактации она возрастает.

Железо из мясных продуктов  усваивается организмом на 30%, из растений – 10%. Последнее объясняется тем, что растительные продукты содержат фосфаты и фитин, которые образуют с железом труднорастворимые  соли, что препятствует его усвояемости. Чай также снижает усвояемость железа в результате связывания его с дубильными веществами в труднорастворимый комплекс.

Несмотря на активное участие железа в обмене веществ, этот элемент может оказывать  токсическое действие при поступлении в организм в больших количествах. Так, у детей после случайного приема 0,5 г железа или 2,5 г сульфата железа наблюдали состояние шока. Широкое промышленное применение железа, распространение его в окружающей среде повышает вероятность хронической интоксикации. Загрязнение пищевых продуктов железом может происходить через сырье, при контакте с металлическим оборудованием и тарой, что определяет соответствующие меры профилактики.

 

Загрязнение веществами и соединениями,

 применяемыми  в растениеводстве

 

Интересна судьба открытого  в 1939 году швейцарцем Паулем Мюллером инсектицида известного как ДДТ.

Препарат токсичен, ЛД50 – 200 мг/кг, ПДК в воздухе - 0,1 мг/м³, ПДК в воде – 0,1 мг/л, допустимые остатки в почве – 1,0 мг/кг, в овощах и фруктах – 0,5 мг/кг, в других продуктах не допускается.

ДДТ сыграл огромную роль в борьбе с малярией, и в 1948 году Пауль Мюллер был удостоен Нобелевской  премии в области медицины за свое открытие.

Однако уже начиная  с 1950 г. начали поступать сообщения  о токсических свойствах ДДТ и реальной угрозе с его стороны для здоровья человека. Благодаря своей стойкости и летучести (период обращения вокруг Земли составлял всего 3-4 недели), ДДТ оказался одним из первых глобальных загрязнителей. Он был обнаружен на всех континентах, в том числе и в Антарктиде. Его способность аккумулироваться и передаваться по пищевым цепям привела к тому, что он был обнаружен в жировом слое пингвинов и в грудном молоке женщин. Все это способствовало тому, что уже в 60 – х гг. в большинстве стран препарат был запрещен (в СССР с 1970 г.).

В настоящее время  споры о применении или же полном запрете пестицидов продолжаются. Ученые разных областей науки (химии, аграрии, медики) – каждый со своих позиций, приводят убедительные доводы как за, так и против. Очевидно, что лишь общие усилия помогут найти правильное решение этой сложнейшей проблемы.

С 1986 г. в нашей стране действует автоматизированный мониторинг, обеспечивающий информацию об уровнях пестицидов и других хлорорганических соединений в продуктах питания. В частности, при мониторинге определяются остаточные количества 154 пестицидов, относящиеся к 45 группам в 262 видах пищевых продуктов, принадлежащих к 23 классам.

Результаты мониторинга  последних лет показывают возрастание  общего содержания пестицидов в продуктах растительного и животного происхождения. Особенно это касается таких продуктов, как картофель, репчатый лук, капуста, помидоры, огурцы, морковь, свекла, яблоки, виноград, пшеница, ячмень, рыба прудов и водохранилищ, молоко. В них обнаруживается наиболее широкий спектр пестицидов. Причем повышение допустимого уровня содержания пестицидов в 5 и более раз следует понимать как экстремальное загрязнение, а оно наблюдается, к сожалению, в широком ассортименте продуктов питания.

Данные мониторинга свидетельствуют о реальной опасности комбинированного воздействия на организм человека множества высокотоксичных пестицидов; позволяют оценить степень такой нагрузки и определить необходимость первоочередных мер по испытанию и профилактике.

Очевидно, что полностью отказаться от применения пестицидов невозможно, поэтому очень важен контроль за производством и применением пестицидов со стороны различных ведомств и организаций, а также информация населения о неблагоприятном воздействии этих соединений на организм человека.

Однако в решении  проблемы, связанной с негативным влиянием пестицидов на организм человека, существуют свои объективные трудности. Пестициды, поступающие в организм с пищевыми продуктами, подвергаются биотрансформации, и это затрудняет их обнаружение и осложняет раскрытие механизмов воздействия на человека. Кроме того, промежуточные продукты биотрансформации ксенобиотиков бывают более токсичны, чем первоначальный ксенобиотик, и в связи с этим, огромное значение приобретает опасность отдаленных последствий.

Нитраты, нитриты, нитрозоамины

 

Нитраты широко распространены в природе, они являются нормальными метаболитами любого живого организма, как растительного так и животного, даже в организме человека в сутки образуется и используется в обменных процессах более 100 мг нитратов.

В чем же опасность  нитратов?

При потреблении в  повышенном количестве нитраты (NO3-) в пищеварительном тракте частично восстанавливается до нитритов (NO2-). Механизм токсического действия нитритов в организме заключается в их взаимодействии с гемоглобином крови и в образовании метгемоглобина, неспособного связывать и переносить кислород, 1 мг нитрита натрия (NaNO2) может перевести в метгемоглобин около 2000 мг гемоглобина.

Информация о работе Мышьяк