Автор работы: Пользователь скрыл имя, 27 Ноября 2013 в 15:42, реферат
В данной работе рассмотрена полная биологическая очистка хозяйственно–бытовых сточных вод поселка городского типа с числом жителей 30000 человек. Заданная проектная производительность 6000 м3/сутки. В работе представлены технологическая схема биологической очистки стоков и ее описание. Исходя из состава и расхода бытовых сточных вод, с учетом необходимой степени очистки выполнен расчет основных технологических параметров, рассчитан основной аппарат – аэротенк-вытеснитель с регенератором, система аэрации и подобрано соответствующее вспомогательное оборудование.
Станции пропускной способностью 500 -1500 м3/суток
В зависимости от применяемых сооружений биологической очистки возможно использовать три технологические схемы очистки сточных вод.
В первой схеме в качестве сооружений биологической очистки используются аэротенки с продлённой аэрацией (или аэротенки отстойники, работающие на полное окисление), во второй схеме используются усреднители и аэротенки с одноиловой системой денитри-нитрификации (аэротенки могут быть с затопленной загрузкой или без неё). В третьей схеме биологическая очистка осуществляется на биофильтрах с плоскостной загрузкой.
Технологическая схема сооружений пропускной способностью 100 - 1000 м3/сутки включает:
- немеханизированные решётки с ручной очисткой;
- тангенциальные песколовки;
- аэротенки-отстойники с продлённой аэрацией;
- биореакторы доочистки сточных вод;
- контактные резервуары;
- аэробный стабилизатор
активного ила; песковые и
На рисунке 2 приведена технологическая схема сооружений по очистке сточных вод населенного пункта пропускной способностью 500 м3/сут.
Рисунок 2. Технологическая схема сооружений по очистке сточных вод пропускной способностью 500 м3/сутки.
1 – поступающая сточная вода; 2 – приемная камера с решеткой; 3 – тангенциальная песколовка; 4 – аэротенк продленной аэрации; 5 – вторичный отстойник; 6 – аэробный стабилизатор активного ила; 7 – биореактор доочистки; 8 – гипохлорит натрия; 9 – контактный резервуар; 10 – очищенная сточная вода; 11 – аэрационная система регенерации биореактора; 12 – аэрационная система; 13 – иловые площадки.
Очистные сооружения обслуживают населенные пункты с населением 2000 жителей.
К приёмной камере с установленной там решёткой сточные воды подаются погружными насосами из насосной станции, находящейся на территории очистных сооружений. Далее сточные воды поступают в двухсекционную тангенциальную песколовку.
Биологическая очистка на очистных сооружениях проходит в аэробном режиме с длительностью пребывания воды 16 ч. Воздух распределяется через дырчатые трубы, диаметр отверстий составляет 3 мм.
Очищенные воды отделяются от осадка в четырёх отстойниках, время отстаивания составляет 3,2 ч. Рециркуляционный активный ил направляется в начало аэротенков, а избыточный активный ил - в аэробные стабилизаторы с уплотнителем, встроенные в общий блок сооружений.
После вторичных отстойников вода доочищаетея в четырёх биологических реакторах, установленных отдельно и сблокированных с контактными резервуарами. Для загрузки биореакторов был использован загрузочный материал «Контур». Осадок после регенерации фильтра откачивается эрлифтами во вторичный отстойник.
После фильтрации общий поток сточной воды поступает в четыре контактных резервуара и далее самотеком направляется в насосную станцию, которая перекачивает се для сброса в водоём.
Избыточный активный ил после аэробной стабилизации в течение 7 суток и уплотнения, направляется на две иловые площадки размером 18x18 м. Обезвоженный активный ил после подсушивания вывозится с территории очистных сооружений на специализированный полигон [23].
Биологические методы очистки сточных вод основываются на естественных процессах жизнедеятельности гетеротрофных микроорганизмов. Микроорганизмы, как известно, обладают целым рядом особых свойств, из которых следует выделить три основных, широко используемых для целей очистки:
В живой микробиальной клетке непрерывно и одновременно протекают два процесса - распад молекул (катаболизм) и их синтез (анаболизм), составляющие в целом процесс обмена веществ - метаболизм. Иными словами, процессы деструкции потребляемых микроорганизмами органических соединений неразрывно связаны с процессами биосинтеза новых микробиальных клеток, различных промежуточных или конечных продуктов, на проведение которых расходуется энергия, получаемая микробиальной клеткой в результате потребления питательных веществ. Значительная часть продуктов микробной трансформации может выделяться клеткой в окружающую среду или накапливаться в ней. Некоторые промежуточные продукты служат питательным резервом, который клетка использует после истощения основного питания.[13]
Процессы биохимического окисления у гетеротрофных микроорганизмов делят на три группы в зависимости от того, что является конечным акцептором водородных атомов или электронов, отщепляемых от окисляемого субстрата. Если акцептором является кислород, то этот процесс называют клеточным дыханием или просто дыханием; если акцептор водорода органическое вещество, то процесс окисления называют брожением; наконец, если акцептором водорода является неорганическое вещество типа нитратов, сульфатов и других, то процесс называют анаэробным дыханием, или просто анаэробным [24].
Наиболее полным является процесс аэробного окисления, т.к. его продукты - вещества, не способные к дальнейшему разложению в микробиальной клетке и не содержащие запаса энергии, которая могла бы быть высвобождена обычными химическими реакциями. Аэробную биологическую очистку можно условно разделить на два вида: с очисткой в условиях, близких к естественным; с очисткой в искусственно созданных условиях.
К первому виду относятся поля фильтрации и орошения (земельные участки, в которых очистка происходит за счет фильтрации через слой грунта), а также биологические пруды (неглубокие водоемы, в которых происходит очистка, основанная на самоочищении водоемов).
Второй вид составляют такие сооружения, как биофильтры и аэротенки. Биофильтр – резервуар с фильтрующим материалом, поверхность которого покрыта биологической пленкой (колония микроорганизмов, способных сорбировать и окислять органические вещества из сточных вод). Аэротенк – резервуар, в котором очищаемые стоки смешиваются с активным илом (биоценоз микроорганизмов, также способных поглощать органику из стоков) [23].
В процессе биологической
очистки сточных вод в
Эта схема включает аэрационные и отстойные сооружения, оборудование и коммуникации для подачи и распределения сточных вод по аэротенкам, сбора и подачи иловой смеси на илоотделение, отведения очищенной воды, обеспечения возврата в аэротенки циркуляционного активного ила и удаления избыточного ила, подачи и распределения воздуха в аэротенках (рисунок 3).
Рисунок 3. Классическая схема биологической очистки сточных вод.
1 - сточная вода после первичных отстойников; 2 - аэротенк; 3 - иловая смесь из аэротенков; 4 - вторичный отстойник; 5 - очищенная вода; 6 - иловая камера; 7,8 - циркуляционный и избыточный активный ил соответственно; 9 - воздух из воздуходувок; 10 - аэрационная система для подачи и распределения воздуха в аэротенке.
По этой схеме активный ил подается сосредоточенно на вход в аэротенк, туда же подается и подлежащая биологической очистке сточная вода после первичного отстаивания. В результате смешения воды и активного ила образуется иловая смесь. В процессе ее движения к выходу из аэротенка обеспечивается необходимая для протекания биохимических реакций длительность контакта активного ила с загрязнениями. Пребывание иловой смеси в отстойных сооружениях приводит к ее разделению под действием гравитационных сил на биологически очищенную воду и активный ил, оседающий и уплотняющийся в нижней иловой части отстойного сооружения. Концентрация ила в ней за время разделения иловой смеси может достигать 6-10 г/л по сухому веществу в зависимости от концентрации ила в поступающей иловой смеси, условий отстаивания и конструктивных особенностей отстойного сооружения [23]. Избыточный активный ил, образовавшийся в результате роста микроорганизмов, поступает на иловые площадки с последующим сжиганием его после обезвоживания.
В аэрационных сооружениях микробиальная масса пребывает во взвешенном в жидкости состоянии в виде отдельных хлопьев, представляющих собой зооглейные скопления микроорганизмов, простейших и более высокоорганизованных представителей фауны (коловратки, черви, личинки насекомых), а также водных грибов и дрожжей. Этот биоценоз организмов, развивающихся в аэробных условиях на органических загрязнениях, содержащихся в сточной воде, получил название активного ила. Доминирующая роль в нем принадлежит различным группам бактерий - одноклеточным подвижным микроорганизмам с достаточно прочной внешней мембраной, способным не только извлекать из воды растворенные и взвешенные в ней органические вещества, но и самоорганизовываться в колонии — хлопья, сравнительно легко отделимые затем от очищенной воды отстаиванием или флотацией [15].
Хлопьеобразующая способность активного ила зависит главным образом от наличия питательных веществ: при слишком высоком их содержании происходят рассеивание колоний и появление нитчатых форм микроорганизмов; при их недостатке, хотя нитчатые формы микроорганизмов практически отсутствуют, размеры хлопьев ила уменьшаются и ухудшаются его седиментационные свойства. Бактерии имеют такую высокую скорость воспроизводства, что в условиях избыточного питания и отсутствия внешних сдерживающих их рост факторов 1 мг бактерий за 1 сут может привести к образованию десятков тонн живой микробиальной массы. Собственно на этой способности к быстрому размножению и, следовательно, высокой скорости потребления питательных веществ и основано использование биологических методов очистки сточных вод.
Роль других микроорганизмов и простейших в активном иле заключается в поддержании определенного равновесия видового и количественного состава ила, хорошо приспособленного к тем или иным условиям, господствующим в аэрационном сооружении, а также полноты протекания биохимических превращений, которым подвергаются органические соединения.
По современным представлениям,
активный ил — это скопление
С инженерной точки зрения
определяющими для
загрязнений. В этой связи представляют интерес основные закономерности развития колонии микроорганизмов, вводимой в контакт с жидкостью, содержащей питательные вещества, при достаточном обеспечении ее растворенным кислородом. В этом развитии можно выделить следующие фазы:
I - лаг-фазу, или фазу адаптации, которая наблюдается сразу после введения микробиальной культуры в контакт с питательной средой, и в которой практически не происходит прироста биомассы. Длительность этой фазы зависит как от природы органических веществ и степени адаптированности микроорганизмов к ним, так и от условий, в которые вносится микробиальная масса;
II - фазу экспоненциального роста микроорганизмов, в которой избыток питательных веществ и отсутствие продуктов обмена веществ способствуют поддержанию максимально возможной в данных условиях скорости размножения клеток, определяемой лишь биологической сущностью процесса их воспроизводства;
Информация о работе Очистка хозяйственно–бытовых сточных вод