Автор работы: Пользователь скрыл имя, 27 Ноября 2013 в 15:42, реферат
В данной работе рассмотрена полная биологическая очистка хозяйственно–бытовых сточных вод поселка городского типа с числом жителей 30000 человек. Заданная проектная производительность 6000 м3/сутки. В работе представлены технологическая схема биологической очистки стоков и ее описание. Исходя из состава и расхода бытовых сточных вод, с учетом необходимой степени очистки выполнен расчет основных технологических параметров, рассчитан основной аппарат – аэротенк-вытеснитель с регенератором, система аэрации и подобрано соответствующее вспомогательное оборудование.
Важным преимуществом
использования системы
Разработка способов очистки сточных вод требует решения двух задач: первая - освобождение воды от веществ загрязнителей; вторая - освобождение воды от суспендированных микроорганизмов. И обе данные задачи эффективно решаются при использовании закрепленной микрофлоры и фауны. Закрепление на носителе различных водных организмов - совершенно необходимое условие надежной, глубокой и эффективной биологической очистки сточных вод. Иммобилизация повышает скорость окисления в 2-3 раза и особенно эффективна при очистке высококонцентрированных вод с большими значениями БПК. Увеличение удельной скорости окисления позволяет сократить время аэрации и, соответственно, уменьшить полезную вместимость аэротенка.
Реакторы оборудуются системой аэрации. По мере насыщения биологическими обрастаниями загрузка регенерируется путем интенсивной продувки воздухом.
Процесс биологической очистки в реакторах проходит настолько энергично, что на очистку может подаваться не отстоянная сточная вода. В реакторах происходит процесс нитрификации, а БПКполн снижается до 3-5 мг/л [11].
Применение систем аэрации с повышенной окислительной способностью. Одним из основных факторов определяющих интенсивность биохимического окисления органических веществ является непрерывное и полное обеспечение микроорганизмов активного ила кислородом. Недостаток кислорода приводит к нарушению обмена веществ в бактериальных клетках и снижению скорости окисления загрязнений. Считается, что для нормальной жизнедеятельности микроорганизмов активного ила достаточна минимальная концентрация растворенного кислорода 1—2 г/м3. Одновременно система аэрации должна обеспечивать достаточную интенсивность перемешивания иловой смеси для создания необходимой частоты обновления поверхности хлопьев, что увеличивает скорость диффузии субстрата и кислорода к бактериальным клеткам. Последнее обстоятельство нужно считать важнейшим условием для повышения окислительной мощности аэротенков, особенно при повышенных концентрациях активного ила.
Именно система аэрации в конечном итоге определяет максимальную концентрацию активного ила в аэротенке и тем самым его максимальную окислительную мощность, если считать, что эта максимальная концентрация не лимитируется работой илоотделителей (вторичных отстойников, флотаторов и др.). Применение кислорода для очистки сточных вод в аэротенках позволяет снизить расход электроэнергии в 1,3—1,7 раза. Наибольшая экономия электроэнергии наблюдается при растворении кислорода в иловой смеси, при этом с избытком компенсируются энергозатраты на производство кислорода.
Совершенствование гидродинамического режима аэротенков. Совершенствование гидродинамического режима аэротенков также позволяет интенсифицировать их работу. Существуют два основных типа аэротенков: смесители и вытеснители. Аэротенки-вытеснители обеспечивают высокое качество и стабильность очистки, однако доза, ила в них невелика и нагрузка на него распределяется неравномерно. Аэротенки-смесители отличаются равномерностью нагрузки на активный ил по органическим загрязнениям, что обеспечивает высокую скорость изъятия загрязнений. Однако в них возможен проскок неочищенной сточной жидкости. Эффективность работы действующих коридорных аэротенков можно повысить путем разделения объема коридора на секции (камеры, ячейки). В аэротенке такой конструкции происходит полное перемешивание, жидкости в каждой камере, однако отсутствует ее перемешивание между камерами. При последовательном движении жидкости от камеры к камере через отверстия в придонной части перегородок создается гидравлический режим, аналогичный гидравлическому режиму в идеальном вытеснителе. Размер камер, общее число которых колеблется от четырех до 10, может быть одинаковым. Наиболее предпочтителен объем камеры, пропорциональный остаточному содержанию загрязнений, определяемых БПК, по мере очистки сточной жидкости [22].
Комбинированные аэротенки. Комбинированные аэротенки, совмещающие в одном объеме зоны аэрации и отстаивания, для очистных сооружений пропускной способностью до 50 тыс. м3/сутки разрабатываются в нашей стране и за рубежом. В этих сооружениях в различных вариантах сочетаются процессы биокоагуляции, аэробного окисления и отстаивания или осветления во взвешенном слое. В зависимости от сочетания этих процессов аэротенки носят различные названия: аэротенк-отстойник, аэроакселератор, оксидатор, циклейтор, реактиватор, оксиконтакт, рапид-блок, оксирапид и т. д. (рисунок 8) [12].
Рисунок 8 – Оксиконтакт-2.
1—трубопровод для подачи сточных вод; 2 — зона аэрации; 3—аэраторы типа «Вибрэйр»; 4— зона отстаивания; 5 и 6 — трубопровод для отвода очищенной сточной жидкости и избыточного активного ила; 7—труба для подачи воздуха.
Комбинированные аэрационные сооружения отличаются высокой окислительной мощностью и компактностью. Они могут быть с механической, пневматической и пневмомеханической аэрацией. Конструктивно они выполняются с центральной зоной аэрации и периферийным отстаиванием, или наоборот.
Циркуляция возвратного
В аэротенках-отстойниках, разработанных в нашей стране, предусматривается принудительная циркуляция активного ила. Такой технологический прием обеспечивает стабильный и регулируемый по объему возврат активного ила в зону аэрации (независимо от притока сточных вод) и поддержание его во взвешенном состоянии. В отстойной зоне аэротенка такой конструкции не образуются мертвые зоны, где возможно скопление и загнивание активного ила. Аэротенки-отстойники могут использоваться для очистки городских и производственных сточных вод, обеспечивая их полную или неполную биологическую очистку.
Применение комбинированных сооружений типа аэротенк-отстойник позволяет экономить земельные площади, сокращать протяженность технологических коммуникаций и значительно уменьшать потребление электроэнергии.
Применение реагентов. Применение различных реагентов также позволяет интенсифицировать процесс биологической очистки. Было изучено действие природных сорбентов на жизнедеятельность микроорганизмов. Установлено, что такие глинистые материалы, как монтмориллонит и палыгорскит, при добавке их в сточные воды в количестве 1 % способны увеличить окислительную активность культуры микроорганизмов почти в 2 раза.
Применение химического мутагенеза. Метод химического мутагенеза также получил широкое распространение для интенсификации очистки сточных вод от химических загрязнителей. Сущность этого метода заключается в воздействии химическими мутагенами на сложный биоценоз активного ила, содержащий различные популяции бактерий, актиномицитов, различных грибов, зеленых водорослей и т. д. [22]
Использование ультразвука. Использование ультразвука для интенсификации очистки сточных вод за счет повышения ферментативной активности микроорганизмов было изучено в Харьковском НИИ по охране вод. Объектом исследований была многокомпонентная, содержащая более 700 органических и минеральных загрязнителей, высококонцентрированная (ХПК до 10000 мг/л) и токсичная сточная жидкость завода химических реактивов. Эксперименты проводились в лабораторном аэротенке с использованием ультразвука. Диапазон электрической мощности составлял 3—400 Вт, время воздействия ультразвука на биоценоз 1—60 мин при частоте ультразвука 22±1 кГц [11]. Ультразвуковая обработка активного ила осуществлялась при постоянном аэрировании. Установлено, что для сточных вод данного производства оптимальной является выходная мощность 10 Вт при 10-ти минутной обработке активного ила ультразвуком. При воздействии ультразвука концентрация дегидрогеназ в активном иле повышается в 1,4—1,8 раз, в результате чего увеличивается окислительная мощность сооружения.
Электрообработка сточных вод. Электрообработка сточных вод с целью интенсификации процессов биологической очистки также проводилась в Харьковском НИИ по охране вод. Определялось влияние силы тока в 25—50 мкА на биохимическую активность ила при постоянных напряжении и времени воздействия. При очистке сточной жидкости с БПК 5400 мг/л эффект изъятия загрязнений в контрольном опыте составил 19%, а при раздражении бактериальных клеток электрическим током 84—87%. Установлено, что этот метод ускоряет внутриклеточные процессы, в частности повышается концентрация дегидрогеназ. Электрический ток целесообразно использовать для интенсификации биологической очистки высококонцентрированных сточных вод. Однако и при очистке городских сточных вод электростимуляция активного ила на Бортнической станции аэрации в Киеве позволила добиться значительного эффекта. При обработке активного ила очистных сооружений в течение 3 мин электрическим током мощностью 2,5 мВт эффект очистки по БПК5 возрос в 2,9—3,2 раза [12].
Совершенствование систем аэрации. Совершенствование систем аэрации сточных вод позволяет в значительной мере интенсифицировать процессы биологической очистки, снизить эксплуатационные расходы и затраты электроэнергии.
Большинство станций аэрации оснащено
пневматическими аэраторами, из которых
наиболее эффективны мелкопузырчатые.
Мелкопузырчатая аэрация
Технологическая схема очистки сточных вод поселка городского типа
На рисунке 9 и 10 приведены:
традиционная схема очистки сточных
вод и выбранная
Рисунок 9. Традиционная технологическая схема очистки сточных вод
1- решетки; 2 – горизонтальные песколовки
с круговым движением воды; 3 –
первичный радиальный
Рисунок 10. Технологическая схема очистки сточных вод поселка городского типа
1- решетки с механизированной
очисткой; 2 – горизонтальные песколовки
с круговым движением воды; 3 –
первичный радиальный
Описание технологической схемы поселка городского типа
Сточные воды, поступающие на очистные сооружения, подвергаются полной биологической очистке, включающей несколько последовательных ступеней:
- Задержание и удаление из сточных вод разного рода механических примесей, отбросов (бытовой мусор, тряпки, бумага) происходит на решетках.
- Выделение из сточной воды минеральных примесей (песок, шлам и т.д.) осуществляется на песколовках.
- Выделение из сточной воды грубодисперсных примесей, оседающих в виде сырого осадка и плавающих жироподобных веществ – на первичных отстойниках.
- Биохимическое окисление
- Отделение сточной воды и активного ила происходит во вторичном отстойнике. Осуществляется разделение активного ила на две части. Циркуляционный активный ил под действием насоса поступает в аэротенк-вытеснитель, а избыточный активный ил подается в аэробный стабилизатор.
- Доочистка сточных вод происходит на механических фильтрах.
- Обеззараживание сточных вод протекает в бактерицидных установках.
- Обработка трех видов
осадков: измельченные отбросы,
3. Материальный баланс процесса биологической очистки
Материальный баланс биологической очистки сточной воды поселка городского типа составлен по результатам расчетов. Все показатели не превышают предельно–допустимых сбросов (ПДС).
Информация о работе Очистка хозяйственно–бытовых сточных вод