Автор работы: Пользователь скрыл имя, 26 Марта 2014 в 21:13, доклад
Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон CCA, а к этой тРНК будет присоединяться только аминокислота глицин).
Они установили, что трансформацию
можно воспроизвести, ис-
пользуя в качестве трансформирующего
агента препарат очищенной
ДНК, полученный из капсульных клеток.
Методика эксперимента за-
ключалась в следующем. Капсульные клетки
пневмококков типа III (SIII),
убитые нагреванием при температуре 65
ºС, лизировали с помощью де-
зоксихолата натрия и лизат осаждали спиртом.
Полученный осадок рас-
творяли и из него удаляли белок и полисахариды.
После нескольких до-
полнительных переосаждений спиртом получали
препарат ДНК, содер-
жащий только 3 % белка. Этим препаратом
ДНК обрабатывали бескап-
сульные клетки типа II (RII). Частота выявления
трансформантов (SIII-
типа) была высокой. В этой же работе и
в работах двух последующих лет
изучены некоторые типы воздействий, инактивирующих
полученный
препарат из капсульных клеток, убитых
нагреванием. Оказалось, что
протеолитические ферменты (трипсин, химотрипсин,
проназа) и РНКаза
не снижали трансформирующую активность
препарата, но действие
ДНКазы ингибировало ее полностью. Был
сделан вывод, что трансфор-
мирующим началом является ДНК. Позднее
было показано, что при ис-
пользовании в качестве трансформирующих
препаратов меченой радио-
активным фосфором (32Р) ДНК, метка необратимо
встраивается в ДНК
бактерий-реципиентов. Более того, между
степенью включения метки и
числом образующихся трансформантов существует
прямая зависимость.
В настоящее время трансформация, кроме
пневмококков, воспроиз-
ведена и на других видах микроорганизмов:
Escherichia coli, Bacillus subtilis,
гемофильных бактериях (Haеmophilus influenzae,
Haemophilus parainfluenzae)
и др. Трансформацию удалось осуществить
не только меж-
ду бактериями одного и того же вида, но
и между бактериями, принад-
лежащими к разным видам. Однако межвидовая
трансформация наблю-
дается, как правило, лишь у близкородственных
бактерий и происходит с
меньшей частотой, чем внутривидовая.
РЕПЛИКАЦИЯ
Вся информация о строении и функционировании любого организма содержится в закодированном виде в его генетическом материале, основу которого у подавляющего числа организмов составляет ДНК. Роль ДНК заключается в хранении и передаче генетической (наследственной) информации в живых организмах. Чтобы эта информация могла передаваться от одного поколения клеток (и организмов) к другому, необходимо её точное копирование и последующее распределение её копий между потомками. Процесс, с помощью которого создаются копии молекулы ДНК, называется репликацией. Перед тем как разделится, клетки с помощью репликации создают копию своего генома, и в результате клеточного деления в каждую дочернюю клетку переходит одна копия. Благодаря этому, генетическая информация, содержащаяся в родительской клетке, не исчезает, а сохраняется и передаётся потомкам.
Репликация ДНК — это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками. Репликацию ДНК осуществляет фермент ДНК-полимераза.
В основе механизма репликация лежит ферментативный синтез дезоксирибонуклеиновой кислоты (ДНК) или рибонуклеиновых кислот (РНК), осуществляемый по матричному принципу. Предложенная в 1953 Дж. Уотсоном и Ф. Криком модель строения ДНК — так называемая двойная спираль — с одной стороны, объяснила, каким образом записана генетическая информация в молекуле ДНК, с другой — позволила понять и экспериментально изучать химические механизмы удвоения генетического материала. Строгая специфичность спаривания азотистых оснований в молекуле ДНК обусловливает комплементарность последовательностей оснований в двух цепях и обеспечивает высокую точность Репликация Пара гуанин — цитозин стабилизируется тремя водородными связями, пара аденин — тимин — двумя, что резко снижает вероятность неправильного спаривания оснований. Согласно Уотсону и Крику, процесс Репликация ДНК предусматривает: 1) разрыв водородных связей и расплетение нитей двойной спирали; 2) синтез на одиночных нитях комплементарных цепей. В результате из одной двухцепочечной ДНК возникают две подобные молекулы, причём в каждой из дочерних молекул одна полинуклеотидная цепь родительская, а другая — синтезированная заново (полуконсервативный механизм Репликация).
У вирусов и фагов, имеющих однонитевую ДНК, Репликация идёт особым образом. После внедрения в клетку хозяина одноцепочечной ДНК, которую называют (+)-цепью, на ней, как на матрице, синтезируется комплементарная ей (-)-цепь. На образовавшейся двухспиральной молекуле (репликативная форма) синтезируются новые одноцепочечные (+)-цепи, включающиеся в новые вирусные частицы. По такому же принципу происходит Репликация РНК-содержащих вирусов и фагов. Т. о., во всех известных случаях Репликация ДНК и РНК проходит через стадию двухцепочечных молекул.
У высших организмов — эукариотов, клетки которых содержат сформированное ядро, основную генетическую функцию несут сложно организованные структуры — хромосомы, состоящие из ДНК, РНК, белков и других веществ. В интерфазе, предшествующей делению клеток (см. Митоз, Мейоз), осуществляется Репликация ДНК и других компонентов хромосом; затем удвоенные хромосомы разъединяются и распределяются равномерно между дочерними клетками. Т. о., вся наследственная информация в относительно неизмененном виде передаётся от клетки к клетке, от поколения к поколению.
Рис. Схема репликативной вилки.
В процессе репликации двойная спираль ДНК, состоящая из двух комплементарных полинуклеотидных цепей, раскручивается на отдельные цепи и одновременно начинается синтез новых полинуклеотидных цепей; при этом исходные цепи ДНК играют роль матриц. Новая цепь, синтезирующаяся на каждой из исходных цепей, идентична др. исходной цепи. Когда процесс завершается, образуются две идентичные двойные спирали, каждая из к-рых состоит из одной старой (исходной) и одной новой цепи (рис. 1). Таким образом, от одного поколения к другому передается только одна из двух цепей, составляющих исходную молекулу ДНК, – так называемый полуконсервативный механизм репликации.
Репликация состоит из большого числа последовательных этапов, которые включают узнавание точки началу репликации, расплетание исходного дуплекса (спирали), удержание его цепей в изолированном друг от друга состоянии, инициацию синтеза на них новых дочерних цепей, их рост (элонгацию), закручивание цепей в спираль и терминацию (окончание) синтеза. Все эти этапы репликации, протекающие с высокой скоростью и исключительной точностью, обеспечивает комплекс, состоящий более чем из 20 ферментов и белков, – так называемая ДНК-репликазная система, или реплисома.
Функциональная единица репликации – репликон, представляющий собой сегмент (участок) хромосомы или внехромосомной ДНК, ограниченный точкой начала, в которой инициируется репликация, и точкой окончания, в которой репликация останавливается. Скорость репликации контролируется на стадии инициации. Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен). Частота инициации определяется взаимодействие специальных регуляторных белков с точкой начала репликации. Бактериальные хромосомы содержат один репликон: инициации в единственной точке начала репликации ведет к репликации всего генома. В каждом клеточном цикле репликация инициируется только один раз. Плазмиды и вирусы, являющиеся автономными генетическими элементами, представляют собой отдельные репликоны, способные к многократной инициации в клетке – хозяине. Эукариотичные хромосомы (хромосомы всех организмов, за исключением бактерий и синезеленых водорослей) содержат большое число репликонов, каждый из которых также однократно инициируется за один клеточный цикл.
Начиная с точки инициации, репликация осуществляется в ограниченной зоне, перемещающейся вдоль исходной спирали ДНК. Эта активная зона репликации может двигаться в обоих направлениях. При однонаправленной репликации вдоль ДНК движется одна репликационная вилка. При двунаправленной репликации от точки инициации в противоположных направлениях расходятся две репликационные вилки; скорости их движения могут различаться. При репликации ДНК бактерии и млекопитающих скорость роста дочерней цепи составляет соотв. 500 и 50 нуклеотидов в 1 с; у растений эта величина не превышает 20 нуклеотидов в 1 с. Движение двух вилок в противоположных направлениях создает петлю, которая имеет вид "пузыря" или "глаза". Продолжающаяся репликация расширяет "глаз" до тех пор, пока он не включит в себя весь репликон.
В ходе репликации рост цепи осуществляется благодаря взаимодействию дезоксирибонуклеозидтрифосфата с 3'-ОН концевым нуклеотидом уже построенной части ДНК; при этом отщепляется пирофосфат и образуется фосфодиэфирная связь. Рост полинуклеотидной цепи идет только с ее З'-конца, т. е. в направлении 5':3'. Фермент, катализирующий эту реакцию, - ДНК – полимераза.
Энергия, затрачиваемая на образование каждой новой фосфодиэфирной связи в цепи ДНК, обеспечивается расщеплением фосфатной связи между a- и b-фосфатными группами нуклеозидтрифосфата.
ДНК-полимераза имеет один центр связывания нуклеозидтрифосфата, общий для всех четырех нуклеотидов. Выбор из среды нуклеотида, основание которого комплементарно очередному основанию матрицы, протекает без ошибок, благодаря определяющему влиянию ДНК-матрицы (исходной цепи ДНК). При некоторых мутационных повреждениях структуры ДНК-полимеразы в ряде случаев происходит включение некомплементарных нуклеотидов.
В процессе репликации формальной ДНК на короткое время с вероятностью 10-4-10-5 возникают редкие таутомерные формы всех 4 азотистых оснований нуклеотидов, которые образуют неправильные пары. Высокая точность репликации (вероятность ошибок не превышает 10-9) обусловлена наличием механизмов, осуществляющих коррекцию (репарацию).
Репликационная вилка асимметрична. Из двух синтезируемых дочерних цепей ДНК одна строится непрерывно, а другая – с перерывами. Первую называют ведущей, или лидирующей, цепью, а вторую – отстающей. Синтез второй цепи идет медленнее; хотя в целом эта цепь строится в направлении 3' : 5', каждый из ее фрагментов в отдельности наращивается в направлении 5' : 3'. Благодаря такому прерывистому механизму синтеза, репликация обеих антипараллельных цепей осуществляется с участием одного фермента-ДНК-полимеразы, катализирующего наращивание нуклеотидной цепи только в направлении 5' : 3'.
В качестве затравок для синтеза фрагментов отстающей цепи служат короткие отрезки РНК, комплементарные матричной цепи ДНК. Эти РНК-затравки (праймеры), состоящие примерно из 10 нуклеотидов, с определенными интервалами синтезируются на матрице отстающей цепи из рибонуклеозидтрифосфатов в направлении 5' : 3' с помощью фермента РНК-праймазы. РНК-праймеры затем наращиваются дезоксинуклеотидами с 3'-конца ДНК-полимеразой, которая продолжает наращивание до тех пор, пока строящаяся цепь не достигает РНК-затравки, присоединенной к 5'-концу предыдущего фрагмента. Образующиеся таким образом фрагменты (т. наз. фрагменты Оказаки) отстающей цепи насчитывают у бактерий 1000-2000 дезоксирибонуклеотидных остатков; в животных клетках их длина не превышает 200 нуклеотидов.
Чтобы обеспечить образование
непрерывной цепи ДНК из многих таких
фрагментов, в действие вступает особая
система репарации ДНК, удаляющая РНК-затравку
и заменяющая ее на ДНК. У бактерий РНК-затравка
удаляется нуклеотид за нуклеотидом благодаря
5' : 3'-экзонуклеазной активности ДНК-полимеразы.
При этом каждый отщепленный рибонуклеотидный
мономер замещается соответствующим дезоксирибонуклеотидом
(в качестве затравки используется З'-конец
синтезированного на старой цепи фрагмента).
Завершает весь процесс фермент ДНК-лигаза,
катализирующий образование фосфодиэфирной
связи между группой З'-ОН нового фрагмента
ДНК и 5'-фосфатной группой предыдущего
фрагмента. Образование этой связи требует
затраты энергии, к-рая поставляется в
ходе сопряженного гидролиза пирофосфатной
связи кофермента-никотинамид-
Раскручивание двойной спирали и пространств. разделение цепей осуществляется при помощи нескольких специальных белков. Геликазы расплетают короткие участки ДНК, находящиеся непосредственно перед репликационной вилкой. На разделение каждой пары оснований расходуется энергия гидролиза двух молекул АТФ до аденозиндифосфата и фосфата. К каждой из разделившихся цепей присоединяется несколько молекул ДНК-связывающих белков, которые препятствуют образованию комплементарных пар и обратному воссоединению цепей. Благодаря этому нуклеотидные последовательности цепей ДНК оказываются доступными для репликативной системы. Другие специфические белки помогают праймазе получить доступ к матрице отстающей цепи. В результате праймаза связывается с ДНК и синтезирует РНК-затравки для фрагментов отстающей цепи. Для формирования новых спиралей не требуется ни затрат энергии, ни участия комплементарного "закручивающего" фермента.
Рис. Сравнительная схема процесса репликации
Таким образом, суть репликации ДНК заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания.
Нужно отметить, что существует ряд объектов, репликация которых проходит по несколько иному механизму, чем было описано выше. Так, например, кольцевая ДНК митохондрий и хлоропластов реплицируется с образованием D-петель (сначала начинает реплицироваться одна цепь, в результате чего образуется структура в форме D, а после репликации более половины первой нити, начинает синтезироваться вторая); ряд плазмид и ДНК некоторых вирусов реплицируется по типу катящегося кольца и т.п. Однако принципиальная схема репликации для всех биологических объектов остаётся одной и той же.
Информация о работе Процессы трансляции, репликации и трансформации