Автор работы: Пользователь скрыл имя, 21 Июня 2013 в 21:51, реферат
Под структурой полимеров понимают взаимное расположение в пространстве макромолекул, образующих полимер. Структура полимера зависит от величины, формы, строения макромолекул и характера взаимодействия между ними и обусловливает важнейшие свойства полимера. В зависимости от строения макромолекул различают три типа полимеров: линейные, разветвленные и пространственные.
Линейные полимеры — это соединения, макромолекулы которых представляют собой длинные цепи.
Структура и свойства полимеров
Под структурой полимеров понимают взаимное расположение в пространстве макромолекул, образующих полимер. Структура полимера зависит от величины, формы, строения макромолекул и характера взаимодействия между ними и обусловливает важнейшие свойства полимера. В зависимости от строения макромолекул различают три типа полимеров: линейные, разветвленные и пространственные.
Линейные полимеры — это соединения, макромолекулы которых представляют собой длинные цепи. Разветвленные полимеры образованы цепями с боковыми ответвлениями. Число ответвлений и их длина различны. Пространственные полимеры построены из длинных цепей макромолекул, которые соединены между собой в трехмерную сетку посредством поперечных мостиков (химических связей), состоящих из атомов или групп атомов.
Линейные и разветвленные полимеры размягчаются (плавятся) при нагревании и вновь затвердевают при охлаждении. Такое свойство полимеров называется термопластичностью, а сами полимеры — термопластичными, или термопластами. К термопластам относятся поливинилхлорид, полиэтилен, полистирол и др. Пространственные полимеры неплавки и нерастворимы; они затвердевают при действии
теплоты и давления
и не размягчаются при
Полимеры сочетают свойства газов (по упругости), жидкостей (по тепловому расширению, сжимаемости, текучести) и твердых тел (по способности сопротивляться деформации). Известны два основных агрегатных состояния полимерного вещества — твердое и жидкое. В жидком состоянии полимеры могут иметь аморфную или кристаллическую структуру. Существуют полимеры, структура которых может быть аморфной и кристаллической.
Полимеры кристаллической структуры характеризуются упорядоченностью расположения макромолекул, плотностью их упаковки, а полимеры аморфной структуры — беспорядочным взаимным расположением макромолекул. Различие в строении аморфных и кристаллических полимеров сказывается на их свойствах. Полимеры кристаллической структуры обладают повышенной теплостойкостью, высокой прочностью, жесткостью и плотностью, низкой эластичностью и способностью к деформациям. К таким полимерам относятся полипропилен, полиамиды, полиэтилен низкого давления, натуральный каучук.
Полимеры аморфной структуры обладают одинаковыми физико-механическими свойствами во всех направлениях. Большинство распространенных в промышленности полимеров - полистирол, поливинилхлорид, полиметилметакрилат, поливинилацетат и др. - аморфные.
Молекулярная масса — важнейшая характеристика свойств полимеров, которая определяет их механические свойства: прочность на разрыв, эластичность, жесткость и т. д. С увеличением молекулярной массы повышаются температура плавления и вязкость растворов, уменьшается растворимость, увеличиваются эластичность и прочность полимеров, а иногда повышается их жесткость.
Основные свойства полимеров
Полимеры могут находиться в твердом и жидком состояниях (газообразное состояние для них не характерно), кристаллическом и аморфном фазовых состояниях, а также в стеклообразном, высокоэластическом и вязкотекучем деформационных физических состояниях.
Полимеры имеют высокую стойкость в таких средах, как щелочи и концентрированные кислоты. В отличие от металлов они не подвержены электрохимической коррозии. С увеличением молекулярной массы снижается растворимость полимеров в растворителях органического происхождения. Полимеры с пространственной структурой практически не подвержены действию органических растворителей.
Большинство полимеров является диэлектриками. Полимеры в основном относятся к немагнитным веществам. Из всех применяемых конструкционных материалов полимеры имеют наименьшую теплопроводность и наибольшие теплоемкость и тепловую усадку. Тепловая усадка полимеров примерно в 10 – 20 раз больше, чем металлов. Причиной потери герметичности уплотнительными узлами при низких температурах является стеклование резины и резкое различие коэффициентов расширения металла и резины в застеклованном состоянии.
Для полимеров характерен широкий диапазон механических характеристик, сильно зависящий от их структуры. Кроме структурных параметров большое влияние на механические свойства полимеров оказывают внешние факторы: температура, длительность и частота или скорость нагружения, давление, вид напряженного состояния, термообработка, характер окружающей среды и др.
Особенностями механических свойств полимеров являются их удовлетворительная прочность, но малая жесткость по сравнению с металлическими материалами.
Полимерные материалы подразделяются на твердые с модулем упругости Е = 1 – 10 ГПа (пластмассы, волокна, пленки) и мягкие высокоэластичные материалы с модулем упругости Е = 1 – 10 МПа (резины). Механизм и закономерности разрушения тех и других существенно различны.
Для полимеров характерны ярко выраженная анизотропия свойств, снижение прочности и развитие ползучести при длительном нагружении. Вместе с тем полимеры обладают высоким сопротивлением усталости. Для полимеров характерна более резко выраженная температурная зависимость механических свойств по сравнению с металлами.
Одной из основных характеристик полимеров является деформируемость. По деформируемости (или податливости) полимеров в широком температурном интервале чаще всего оценивают их основные технологические и эксплуатационные свойства.
Значение деформируемости определяют методом термомеханических кривых деформация - темnepaтypa (рисунок 2).
Рисунок 2 – Термомеханическая кривая аморфного полимера с линеной структурой: Тс – температура стеклования; Тt – температура начала вязкого течения; I, II, III – участки стеклообразного, высокоэластичного и вязкотекучего состояний
Термомеханические кривые получают при нагреве нагруженного образца полимера с заданной скоростью. Действующая нагрузка должна быть постоянной по величине и малой по значению, чтобы механические воздействия на полимер не приводили к изменению его структуры.
Анализ кривой на рисунке 2 показывает, что полимер может находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем.
В стеклообразном состоянии при малых напряжениях наблюдается только упругая деформация с высоким модулем упругости (Е = 2,2 – 5 ГПа). Стеклообразное состояние является одной из форм твердого состояния высокомолекулярных веществ. Выше температуры стеклования к этой деформации добавляется высокоэластическая составляющая, которая значительно превосходит упругую и характеризуется модулем высокоэластичности Е = 0,1 – 1 МПа. Выше температуры текучести проявляется еще одна составляющая деформации, которая приводит к постепенному накоплению остаточной деформации образца полимера. Границы между этими физическими состояниями характеризуются значениями температур стеклования Тс и текучести Тt. Критические температуры Тс и Тt являются основными характеристиками полимеров.
Важность этих характеристик хорошо иллюстрируется следующими примерами. Во многих случаях волокна и полимеры должны иметь высокую прочность. Поэтому лежащие в их основе полимеры должны находиться в стеклообразном состоянии. Резиновой промышленности, наоборот, необходимы высокоэластичные полимеры, сохраняющие это состояние в широком температурном интервале. Процесс технологической переработки полимеров происходит, как правило, в области вязкотекучего состояния. Поэтому для переработки они должны быть нагреты выше соответствующей температуры Тt.
Низкомолекулярные вещества не могут находиться в высокоэластическом состоянии, для них характерны только стеклообразное и вязкотекучее состояния. Высокоэластическое состояние занимает тем больший температурный интервал Тс – Тt, чем больше молекулярная масса полимера.
Все полимеры в большей или меньшей степени подвержены процессу старения во времени. Старением полимеров называют самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении.
Старению способствуют свет, частая смена циклов нагрев – охлаждение, воздействие кислорода, озона и другие факторы. Старение ускоряется при многократных деформациях, менее существенное влияние на старение оказывает влага. При старении повышается твердость, хрупкость, теряется эластичность. При высоких температурах (200 – 250°С) происходит термическая деструкция – разложение органических полимеров, сопровождающееся испарением летучих веществ.
Для замедленного старения в полимерные материалы добавляют стабилизаторы. Обычно применяют стабилизаторы двух типов: термостабилизаторы (амины, фенолы) и светостабилизаторы (например, сажу).
Длительность эксплуатации стабилизированных полимеров значительно возрастает. Срок наступления хрупкости полиэтилена, стабилизированного сажей, составляет свыше 5 лет. Трубы из поливинилхлорида могут работать 10 – 25 лет.
Для определения механических свойств неметаллических материалов проводят статические испытания на растяжение, сжатие и изгиб; динамические испытания на удар; определение твердости, усталостной прочности, ползучести и др. С целью определения стойкости к старению проводят физико-механические испытания материалов после ускоренных климатических испытаний на фотостарение.
Кроме того, существуют методы определения массы, толщины, плотности материала, а также специальные виды испытаний:
для картона – на надлом, излом, продавливание, сжатие кольца, линейное сжатие;
гофрированного картона, гофропласта – на торцевое и плоскостное сжатие, расслаивание, продавливание и пробой;
резины – на стойкость при статической деформации сжатия;
древесностружечных плит – на прочность и модуль упругости при изгибе, удельное сопротивление выдергиванию гвоздей и шурупов.
Широким применением полимеры обязаны своим свойствам, важнейшими из них являются способность к образованию анизотропных высокоориентированных волокон и пленок, отличающихся высокой прочностью. Для линейных полимеров характерен ряд специфических комплексных физико-химических и механических свойств. За счет своей высокой молекулярной массы линейные полимеры склонны к большим, имеющим длительное развитие, обратимым деформациям. Эти полимеры, находясь в высокоэластичном состоянии, способны набухать, прежде, чем раствориться. Линейные полимеры характеризуются высокой вязкостью растворов. Эти свойства выражены в значительной мере меньше у полимеров с разветвлениями, трехмерными сетками и густыми сетчатыми структурами. Полимеры, сильно сшитые, не обладают растворимостью, не плавятся и не склонны к высокоэластичным деформациям.
Полимерам свойственны, как аморфные, так и кристаллические состояния. Для кристалличесих полимеров необходимо наличие в их структуре регулярных, достаточно длинных участков макромолекул. Кристаллические полимеры часто являются местом зарождения разнообразных надмолекулярных структур, к примеру, фибрилл, сферолитов, монокристаллов и т.д. Типы этих структур в значительной мере влияют на свойства полимерного материала. Незакристаллизированные полимеры реже образуют надмолекулярные структуры и могут находиться в трех физических состояниях: стеклообразном, вязкотекучем и высокоэластическом. Эластомеры, полимеры, способны переходить из стеклообразного в высокоэластическое состояние при низкой температуре. Пластики, наоборот, для этого требуют высокой температуры.
Свойства полимеров очень разнообразны и варьируются в зависимости от их химического состава, строения молекул и их взаимного расположения. Примерами могут служить 1.4-цис-полибутадиен, состоящий из углеводородных цепей с характерной гибкостью. Он является эластичным материалом при температуре 20 градусов по Цельсию, а при нагревании до 60 градусов переходит в стеклообразное состояние, и полиметилметакрилат, состоящий из достаточно жестких цепей, при 20 градусах являющийся твердым, стеклообразным продуктом, и лишь при 100 градусах переходящий в высокоэластичное состояние. Целлюлоза также состоит из более жестких цепей, которые соединяются между собой водородными связями. Она не существует в высокоэластичном состоянии, пока не достигнута температура ее разложения. Даже при небольших отличиях в строении макромолекул наблюдаются большие отличия в свойствах полимеров. Например, стереорегулярный полистирол сохраняет свое кристаллическое состояние до температуры плавления, около 235 градусов, а нестереорегулярный, так называемый атактический, полистирол не склонен к кристаллизации, и при температуре около 80 градусов размягчается.
Полимерам свойственны следующие типы реакций: между макромолекулами в составе полимеров может происходить сшивание. Этот процесс можно наблюдать при вулканизации каучуков и в процессе дубления кожи. Молекулы полимеров могут распадаться на более короткие по размерам фрагменты. В боковых функциональных группах полимеров с низкомолекулярными веществами также образуются реакции, но они не затрагивают основную цепь. Такие превращения называют полимераналогичные. Кроме того, полимерам свойственны реакции внутри макромолекул между их функциональными группами. Примером является циклизация внутри молекул. Вышеупомянутое сшивание макромолекул зачастую сопровождается деструкцией. В качестве примера можно назвать получение поливинилового спирта, в основе которого лежит омыление поливинилацетата. Полимеры вступают в реакции с низкомолекулярными веществами, их скорость ограничена скоростью диффузии низкомолекулярных веществ в фазу. Часто этот процесс наблюдается у сшитых полимеров. Кроме того, на скорость взаимодействия макромолекул в составе полимеров с низкомолекулярными веществами напрямую влияет природа и расположение соседних звеньев по отношению к реагирующему звену. Это же характерно и для внутримолекулярных реакций между функциональными группами в составе одной цепи макромолекул.