Автор работы: Пользователь скрыл имя, 22 Января 2014 в 09:44, реферат
Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.
Естественные источники радиации.
Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах -. соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолетах все это увеличивает уровень облучения за счет естественных источников радиации. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения. В этой главе мы рассмотрим вначале данные о внешнем облучении от источников космического и земного происхождении. Затем остановимся на внутреннем облучении, причем особое внимание уделим радону радиоактивному газу, который вносит самый большой вклад в среднюю дозу облучения населения из всех источников естественной радиации. Наконец, в ней будут рассмотрены некоторые стороны деятельности человека, в том числе использование угля и удобрений, которые способствуют извлечению радиоактнвных веществ из земной коры и увеличивают уровень облучения людей от естественных источников радиации.
Космическое излучение.
Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации . Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводят к образованию различных радионуклидов. Нет такого места на Земле, куда бы не падал этот невидимый космический душ. Но одни участки земной поверхности более подвержены его действию, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы (из которых в основном и состоят космические лучи). Существеннее, однако, то, что уровень облучения растет с высотой, поскольку при этом над нами остается все меньше воздуха, играющего роль защитного экрана. Люди, живущие на уровне моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу около 300 микрозивертов (миллионных долей зиверта) в год; для людей же, живущих выше 2000 м над уровнем моря это величина в несколько раз больше. Еще более интенсивному, хотя и относительно непродолжительному облучению, подвергаются экипажи и пассажиры самолетов. При подъеме с высоты 4000 м (максимальная высота, на которой расположены человеческие поселения: деревни шерпов на склонах Эвереста)до 12000 в (максимальная высота полета трансконтинентальных авиалайнеров) уровень облучения за счет космических лучей возрастает примерно в 25 раз и продолжает расти при дальнейшем увеличении высоты до 20000 м (максимальная высота полета сверхзвуковых реактивных самолетов) и выше. При перелете из Нью-Йорка в Париж пассажир обычного турбореактивного самолета получает дозу около 50 мкЗв, а пассажир сверхзвукового самолета на 20% меньше, хотя подвергается более интенсивному облучению. Это объясняется тем, что во втором случае перелет занимает гораздо меньше времени . Всего за счет использования воздушного транспорта человечество получает в год коллективную эффективную эквивалентную дозу около 2000 чел-Зв.
Земная радиация.
Основные радиоактивные изотопы, встречающиеся в горных породах Земли, это калий-40,рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232долгоживущих изотопов, включившихся в состав Земли с самого ее рождения. Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации радионуклидов в том или ином участке земной коры. В местах проживания основной массы населения они примерно одного порядка. Так, согласно исследованиям, проведенным во Франции, ФРГ, Италии, Японии и США, примерно 95% населения этих стран живет в местах, где мощность дозы облучения в среднем составляет от 0,3 до О,б миллизиверта (тысячных зиверта) в год. Но некоторые группы населения получают значительно большие дозы облучения: около 3% получает в среднем 1 миллизиверт в год, а около 1,5% более 1,4 миллизиверта в год. Есть, однако, такие места, гдеуровни земной радиации намного выше. Неподалеку от города Посус-ди-Калв Бразилии, расположенного в 200 км к северу от Сан-Паулу, есть небольшая возвышенность. Как оказалось, здесь уровень радиации в 800 раз превосходит средний и достигает 250 миллизивертов в год. По каким-то причинам возвышенность оказалась необитаемой. Однако лишь чуть меньшие уровни радиации были зарегистрированы на морском курорте, расположенном в 600км к востоку от этой возвышенности. Гуарапари небольшой город с населением 12000 человек каждое лето становится местом отдыха примерно30000 курортников. На отдельных участках его пляжей зарегистрирован уровень радиации 175 миллизивертов в год. Радиация на улицах города оказалась намного ниже от 8 до 15 миллизивертов в год, но все же значительно превышала средний уровень. Сходная ситуация наблюдается в рыбацкой деревушке Меаипе, расположенной в 50 км к югу от Гуарапари. Оба населенных пункта стоят на песках, богатых торием. В другой части света, на юго-западе Индии, 70000 человек живут на узкой прибрежной полосе длиной 55 км, вдоль которой также тянутся пески, богатые торием. Исследования, охватившие 8513 человек из числа проживающих на этой территории, показали, что данная группа лиц получает в среднем 3,8 миллизиверта в год на человека. Из них более 500 человек получают свыше 8,7 миллизиверта в год. Около шестидесяти ч получают годовую дозу, превышающую 17 миллизивертов, что в 50 раз больше средней годовой дозы внешнего облучения от земных источников радиации. Эти территории в Бразилии и Индии являются наиболее хорошо изученными <<горячими точками>> нашей планеты. Но в Иране, например в районе городка Рамсер, где бьют ключи, богатые радием, были зарегистрированы уровни радиации до 400 миллизивертов в год. Известны и другие места на земном шаре с высоким уровнем радиации, например во Франции, Нигерии, на Мадагаскаре. По подсчетам НКДАР ООН средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет примерно 350 микрозивертов, т. е. чуть больше средней индивидуальной дозы облучения из-за радиационного фона, создаваемого космическими лучами на уровне моря.
Внутреннее облучение.
В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом. Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под воздействием космической радиации. Все остальное поступает от источников земного происхождения. В среднем человек получает около 180 микрозивертов в год за счет калия-40, который усваивается организмом в месте с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшей степени от радионуклидов ряда тория-232.Некоторые из них, например нуклиды свинца-210 и полония-210, поступают в организм с пищей. Они концентрируются в рыбе и моллюсках, поэтому люди, потребляющие много рыбы и других даров моря, могут получить относительно высокие дозы облучения. Десятки тысяч людей на Крайнем Севере питаются в основном мясом северного оленя (карибу), в котором оба упомянутых выше радиоактивных изотопа присутствуют в довольно высокой концентрации. Особенно велико содержание полония-210. Эти изотопы попадают в организм оленей зимой, когда они питаются лишайниками, в которых накапливаются оба изотопа. Дозы внутреннего облучения человека от полония-210 в этих случаях могут в 35 раз превышать средний уровень. А в другом полушарии люди, живущие в Западной Австралии в местах с повышенной концентрацией урана, получают дозы облучения, в 75 раз превосходящие средний уровень, поскольку едят мясо и требуху овец и кенгуру. Прежде чем попасть в организм человека, радиоактивные вещества, как и в рассмотренных выше случаях, проходят по сложным маршрутам в окружающей среде, и это приходится учитывать при оценке доз облучения, полученных от какого-либо источника.
Другие источники радиации.
Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей. Хотя концентрация радионуклидов в разных угольных пластах различается в сотни раз, в основном уголь содержит меньше радионуклидов, чем земная кора в среднем. Но при сжигании угля большая часть его минеральных компонентов спекается в шлак или золу, куда в основном и попадают радиоактивные вещества. Большая часть золы и шлаки остаются на дне топки электросиловой станции. Однако более легкая зольная пыль уносится тягой в трубу электростанции. Количество этой пыли зависит от отношения к проблемам загрязнения окружающей среды и от средств, вкладываемых в сооружение очистных устройств. Облака, извергаемые трубами тепловых электростанций, приводят к дополнительному облучению людей, а оседая на землю, частички могут вновь вернуться в воздух в составе пыли. Согласно текущим оценкам, производство каждого гигаватт-года электроэнергии обходится человечеству в 2 чел-Зв ожидаемой коллективной эффективной эквивалентной дозы облучения, т.е. в 1979 году, например, ожидаемая коллективная эффективная эквивалентная доза от всех работающих на угле электростанций во всем мире составила около 2000 чел-Зв. На приготовление пищи и отопление жилых домов расходуется меньше угля, но зато больше зольной пыли летит в воздух в пересчете на единицу топлива. Таким образом, из печек и каминов всего мира вылетает в атмосферу зольной пыли, возможно, не меньше, чем из труб электростанций. Кроме того, в отличие от большинства электростанций жилые дома имеют относительно невысокие трубы и расположены обычно в центре населенных пунктов, поэтому гораздо большая часть загрязнений попадает непосредственно на людей. До последнего времени на это обстоятельство почти не обращали внимания, но по весьма предварительной оценке из-за сжигания угля в домашних условиях для приготовления пищи и обогревания жилищ во всем мире в 1979 году ожидаемая коллективная эффективная эквивалентная доза облучения населения Земли возросла на 100000 чел-Зв. Не много известно также о вкладе в облучение населения от зольной пыли, собираемой очистными устройствами. В некоторых странах более трети ее используется в хозяйстве, в основном в качестве добавки к цементам и бетонам. Иногда бетон на 4/5 состоит из зольной пыли. Она используется также при строительстве дорог и для улучшения структуры почв в сельском хозяйстве. Все эти применения могут привести к увеличению радиационного облучения, но сведений по этим вопросам публикуется крайне мало. Еще один источник облучения населения термальные водоемы. Некоторые страны эксплуатируют подземные резервуары пара и горячей воды для производства электроэнергии и отопления домов; один такой источник вращает турбины электростанции в Лардерелло в Италии с начала нашего века. Измерения эмиссии радона на этой и еще на двух, значительно более мелких, электростанциях в Италии показали, что на каждый гигаватт-год вырабатываемой ими электроэнергии приходится ожидаемая коллективная эффективная эквивалентная доза 6 чел-Зв, т. е. в три раза больше аналогичной дозы облучения от электростанций, работающих на угле. Однако, поскольку в настоящее время суммарная мощность энергетических установок, работающих на геотермальных источниках, составляет всего 0,1% мировой мощности, геотермальная энергетика вносит ничтожный вклад в радиационное облучение населения. Но этот вклад может стать весьма весомым, поскольку ряд данных свидетельствует о том, что запасы этого вида энергетических ресурсов очень велики. Добыча фосфатов ведется во многих местах земного шара; они используются главным образом для производства удобрений, которых в 1977 году во всем мире было получено около 30 млн. т. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий там в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае бывает обыкновенно незначительным, но возрастает, если удобрения вносят в землю в жидком виде или если содержащие фосфаты вещества скармливают скоту. Такие вещества действительно широко используются в качестве кормовых добавок, что может привести к значительному повышению содержания радиоактивности в молоке. Все эти аспекты применения фосфатов дают за год ожидаемую коллективную эффективную эквивалентную дозу, равную примерно 6000 чел-Зв, в то время как соответствующая доза из-за применения фосфогипса, полученного только в 1977 году, составляет около 300000 чел-Зв.
Источники, созданные человеком.
За последние несколько
десятилетий человек создал несколько
сотен искусственных
Источники, использующиеся в медицине.
В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации. Радиация используется в медицине как в диагностических целях, так и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из основных способов борьбы с раком является лучевая терапия. Понятно, что индивидуальные дозы, получаемые разными людьми, сильно варьируют от нуля (у тех, кто ни разу не проходил даже рентгенологического обследования) до многих тысяч среднегодовых <естественных> доз (у пациентов, которые лечатся от рака). Однако надежной информации, на основании которой НКДАР ООН мог бы оценить дозы, получаемые населением Земли, слишком мало. Hе известно, сколько человек ежегодно подвергается облучению в медицинских целях, какие дозы они получают и какие органы и ткани при этом облучаются. В принципе облучение в медицине направлено на исцеление больного. Однако нередко дозы оказываются неоправданно высокими: их можно было бы существенно уменьшить без снижения эффективности, причем польза от такого уменьшения была бы весьма существенна, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников. Наиболее распространенным видом излучения, применяющимся в диагностических целях, являются рентгеновские лучи. Согласно данным по развитым странам, на каждую 1000 жителей приходится от 300 до 900 обследований в год это не считая рентгенологических обследований зубов и массовой флюорографи. Менее полные данные по развивающимся странам показывают, что здесь число проводимых обследований не превышает 100-200 на 1000 жителей. В действительности около 2/3 населения Земли проживает в странах, где среднее число рентгенологических обследований составляет не более 10% от числа обследований в промышленно развитых стpанах. В большинстве стpан около половины рентгенологических обследований приходится на долю грудной клетки. Однако по мере уменьшения частоты заболеваний туберкулезом целесообразность массовых обследований снижается. Более того, практика показала, что раннее обнаружение рака легких почти не увеличивает шансов на выживание пациента. Сейчас во многих промышленно развитых странах, включая Швецию, Великобританию и Соединенные Штаты, частота таких обследований существенно снизилась, однако в некоторых странах около 1/3 населения по-прежнему ежегодно подвергается подобному обследованию. Недавно появился целый ряд технических усовершенствований, которые при условии их правильного применения могли бы привести к уменьшению дозы, получаемой пpи pентгеновском обследовании. Тем не менее по данным для Швеции и США это уменьшение оказалось весьма незначительным или отсутствовало вообще. Даже в пределах одной страны дозы очень сильно варьируют от клиники к клинике. Исследования, проведенные в ФРГ, Великобритании и США, показывают, что дозы, получаемые пациентами, могут различаться в сто раз. Известно также, что иногда облучению подвергается вдвое большая площадь поверхности тела, чем это необходимо. Наконец, установлено, что излишнее радиационное облучение часто бывает обусловлено неудовлетворительным состоянием или эксплуатацией оборудования. Тем не менее известны случаи, когда дозы облучения действительно были снижены благодаря усовершенствованию оборудования и повышению квалификации персонала. Иногда для существенного повышения эффективности диагностики нужно лишь слегка увеличить дозу. Как бы то ни было, пациент должен получать минимальную дозу при обследовании, и, по мнению НК ДАР, здесь имеются резервы значительного уменьшения облучения.
Среди персонала АЭС в ФРГ, Великобритании и США, которые получает дозы, не превышающие предельно допустимого, согласно международным стандартам, уровня, также обнаружены хромосомные аномалии. Но биологическое значение таких повреждений и их влияние на здоровье человека пока не выяснены. Поскольку нет никаких других сведений, приходится оценивать риск появления наследственных дефектов у человека основываясь на результатах, полученных в многочисленных экспериментах на животных. При оценке риска появления наследственных дефектов у человека НКДАР использует два подхода. При одном подходе пытаются определить непосредственный эффект данной дозы облучения, при другом
стараются определить дозу,
при которой удваивается
до 300 случаев на миллион
живых новорожденных. Согласно оценкам,
полученным вторым методом, хроническое
облучение при мощности дозы в 1 Гр
на поколение (для человека-30 лет) приведет
к появлению около 2000 серьезных
случаев генетических заболеваний
на каждый миллион живых новорожденных
среди детей тех, кто подвергся
такому облучению. Этим методом пользуются
также для оценки суммарной частоты
появления серьезных
известно также о влиянии
облучения на такие признаки, как
рост и плодовитость, которые определяются
не одним, а многими генами, функционирующими
в тесном взаимодействии друг с другом.
Оценки НКДАР ООН относятся