Методы анализа и контроля компонентов окружающей среды

Автор работы: Пользователь скрыл имя, 24 Декабря 2013 в 10:10, реферат

Краткое описание

Система экологического мониторинга не ограничивается только сбором информации об окружающей среде. Экологический мониторинг сам по себе является исследованием, которое включает в себя этапы сбора, упорядочивания, анализа данных, прогнозирования и принятия управленческого решения. Постоянный мониторинг лежит также в основе функционирования кадастровых систем, геоинформационных систем, а также экосистемного анализа. Данные экологического мониторинга используются при проведении экологической экспертизы (например, для оценки воздействия на окружающую среду (ОВОС)), экологического аудита и в других смежных областях.

Содержание

Введение 3
1. Оценка приоритетных контролируемых параметров природной среды 5
1. 1 Контроль качества воздуха 6
1. 1 Контроль качества воды 14
1. 2 Контроль качества почвы 20
1. 3 Контроль качества продуктов питания 22
1. 4 Контроль воздействия физических факторов 23
1. 5 Контроль воздействия ксенобиотиков 31
1. 6 Контроль воздействия неорганических соединений 43
Заключение 44
Список используемой литературы 45

Вложенные файлы: 1 файл

методы анализа и контроля компонентов ос.docx

— 121.33 Кб (Скачать файл)

Промышленная пыль возникает  в процессе производства. Почти каждому  виду производства, каждому материалу  или виду сырья сопутствует определенный вид пыли. Многие технологические  процессы направлены на получение различных  материалов, состоящих из мелких частиц, например, цемента, строительного гипса, муки и т.д. Совокупность этих частиц правильно называть пылевидным материалом. Соответствующей пылью (например, цементной, мучной и т.д.) обычно называют наиболее мелкие частицы этих материалов, разносимые потоками воздуха.

В зависимости от материала, из которого пыль образована, она может  быть органической и неорганической. В свою очередь органическая пыль бывает растительного (древесная, хлопковая, мучная, табачная, чайная и т.д.) и животного (шерстяная, костяная и др.) происхождения. Неорганическая пыль подразделяется на минеральную (кварцевая, цементная и др.) и металлическую (стальная, чугунная, медная, алюминиевая и др.).

Значительная часть промышленных пылей – смешанного происхождения, т.е. состоит из частиц неорганических и органических или, будучи органической, включает в себя частицы минеральной и металлической пыли. Например, зерновая пыль, кроме частиц, образующихся при измельчении зерна, содержит также минеральные частицы, попавшие в массу зерна при выращивании и сборе урожая. Пыль, выделяющаяся при шлифовании металлических изделий, кроме металлических частиц, содержит минеральные частицы, образующиеся при взаимодействии обрабатываемого металла и орудий его обработки (абразивного круга и т.д.). Это нужно учитывать при выборе методов очистки и пылеулавливающего оборудования.

Для оценки пыли важен такой  показатель как дисперсность – степень измельчения вещества. Под дисперсным (зерновым, гранулометрическим) составом понимают распределение частиц аэрозолей по размерам. Он показывает, из частиц какого размера состоит данный аэрозоль, и массу или количество частиц соответствующего размера. ГОСТ 12.2.043-80 подразделяет все пыли в зависимости от дисперсности на пять групп: I – наиболее крупнодисперсная пыль; II – крупнодисперсная пыль; III – среднедисперсная пыль; IV – мелкодисперсная пыль; V – наиболее мелкодисперсная пыль.

Для количественной характеристики запыленности воздуха в настоящее  время используется преимущественно  весовой метод (гравиметрия). Кроме  того, существует счетный метод. Весовые  показатели определяют массу пыли в  единице объема воздуха. Это прямые методы измерения запыленности. Существует также группа косвенных методов измерения запыленности. Под косвенными методами понимают методы как с выделением пыли из воздуха, основанные на определении ее массы путем использования различных физических явлений (интенсивности излучения, электрического поля, оптической плотности и т.д.).

Наиболее распространенными  является гравиметрический метод определения  весовой концентрации пыли. Через  аналитический фильтр просасывается  определенный объем запыленного  воздуха. Массу всей витающей пыли без  разделения на фракции рассчитывают по привесу фильтра. Метод применяется  для определения разовых и  среднесуточных концентраций пыли в  воздухе населенных пунктов и  санитарно-защитных зон в диапазоне 0,04 – 10 мг/м3.

Другим, часто используемым, методом является газовая хроматография. ГХ – это физико-химический метод разделения веществ, основанный на распределении веществ между подвижной и неподвижной фазой, позволяет составить информационную модель для объекта наблюдения и прогнозировать изменения состояния природной среды. Основная задача хроматографического исследования – это полное разделение веществ за короткое время. Газовая хроматография пригодна для определения любых соединений, которые могут быть воспроизводимо определены. Этот метод пригоден для анализа любых типов проб воздуха окружающей среды при условии соответствующей их подготовки.

С помощью метода ГХ возможен анализ воздуха с целью обнаружения  вредных примесей, в том числе  аэрозолей, определение газов и  веществ в неизвестном физическом состоянии (пары или аэрозоли), а  также проведение производственного  токсикологического анализа.

Загрязнение воздуха в  результате поступления в него различного рода вредных веществ имеет ряд  неблагоприятных последствий:

Санитарно-гигиенические  последствия. Поскольку воздух является средой, в которой человек находится в течение всей жизни и от которой зависит его здоровье, самочувствие и работоспособность, наличие в воздушной средой порой даже небольших концентраций вредных веществ может неблагоприятно отразиться на человеке, привести в необратимым последствиям и даже к смерти.

Экологические последствия. Воздух является важнейшим элементом окружающей среды, находящимся в непрерывном контакте со всеми другими элементами живой и мертвой природы. Ухудшение качества воздуха вследствие присутствия в нем различных загрязнителей приводит к гибели лесов, посевов сельскохозяйственных культур, травяного покрова, животных, к загрязнению водоемов, а также к повреждению памятников культуры, строительных конструкций, различного рода сооружений и т.д.

Экономические последствия. Загрязнение воздуха вызывает значительные экономические потери. Запыленность и загазованность воздуха в производственных помещениях приводит к снижению производительности труда, потере рабочего времени из-за увеличения заболеваемости. Во многих производствах наличие пыли в воздушной среде ухудшает качество продукции, ускоряет износ оборудования. В процессе производства, добычи, транспортирования многих видов материалов, сырья, готовой продукции часть этих веществ переходит в пылевидное состояние и теряется (уголь, руда, цемент и др.), загрязняя в то же время окружающую среду. Потери на ряде производств составляют до 3-5 %. Велики потери из-за загрязнения окружающей среды. Мероприятия по уменьшению последствий загрязнения обходятся дорого.

 

 

 

 

 

      1. Контроль качества воды

Исключительная роль воды в жизни человека и всего живого на Земле обуславливает возрастающее внимание к изучению гидросферы и  состоянию водных объектов [30, 34]. Информация о состоянии объектов гидросферы используется в сельском хозяйстве, энергетике, строительстве, транспортной инфраструктуре, для системы водоснабжения, для предупреждения чрезвычайных ситуаций, обусловленных активностью водных объектов (наводнения, сели, лавины, засухи и др.). Общее количество природной воды на Земле составляет 1386 млн. куб. км., из них количество пресной воды – 35 млн. куб.км., т.е. около 2,5%. Объем потребления пресной воды в мире достигает 3900 млрд.куб. м/год. Около половины этого количества потребляется безвозвратно, а другая половина превращается в сточные воды.

Определим основные термины, используемые в системе мониторинга  водных объектов:

Сточная вода – это вода, бывшая в бытовом, производственном или сельскохозяйственном употреблении, а также прошедшая через загрязненную территорию.

В зависимости от условий  образования сточные воды делятся  на бытовые или хозяйственно-фекальные (БСВ), атмосферные (АСВ) и промышленные (ПСВ).

Хозяйственно-бытовые  воды – это стоки душевых, прачечных, столовых, туалетов, от мытья полов и др. Они содержат примеси, из которых ~58% органических веществ и 42% минеральных.

Атмосферные воды образуются в результате выпадения атмосферных  осадков и стекающие с территорий предприятий. Они загрязняются органическими  и минеральными веществами.

Промышленные  сточные воды – это жидкие отходы, которые возникают при добыче и переработке органического и неорганического сырья.

Сточные воды загрязнены различными веществами: 1) биологически нестойкие  органические соединения; 2) малотоксичные  неорганические соли; 3) нефтепродукты; 4) биогенные соединения; 5) вещества со специфичными токсичными свойствами, в т.ч. тяжелые металлы, биологически жесткие неразлагающиеся органические синтетические соединения.

Промышленные и бытовые  сточные воды содержат взвешенные частицы  растворимых и нерастворимых  веществ. Взвешенные примеси подразделяются на твердые и жидкие, образуют с водой дисперсную неоднородную систему. Под неоднородной системой понимают систему, состоящую из двух или нескольких фаз, каждая из которых имеет свою поверхность раздела и может быть механически отделена от другой фазы. Система, в которой внешней фазой является жидкость, называется жидкой неоднородной системой.

Сточные воды многих производств кроме растворимых неорганических и органических веществ содержат коллоидные примеси, а также взвешенные грубодисперсные и мелкодисперсные примеси, плотность которых может быть больше или меньше плотности воды.

В зависимости от физического  состояния фаз различают следующие  жидкие неоднородные системы: суспензии, эмульсии и пены.

Суспензия состоит из жидкости и взвешенных в ней твердых частиц.

В зависимости от размеров частиц различают грубые суспензии  с частицами размером > 100 мкм, тонкие (0,5-100 мкм) и мути (0,1-0,5 мкм). Промежуточное положение между суспензиями и истинными растворами занимают коллоидные растворы с размерами частиц менее 0,1 мкм.

Эмульсия состоит из 2-х несмешивающихся или частично смешивающихся жидкостей, одна из которых распределена в другой в виде жидких капель.

Величина частиц дисперсной фазы в эмульсиях колеблется в  довольно широких пределах.

Пена – система, состоящая из жидкости и распределенных в ней пузырьков газа.

Неоднородные системы  характеризуются массовым или объемным соотношением фаз и размерами  частиц дисперсной фазы. Дисперсную фазу, состоящую из частиц неодинакового размера, принято характеризовать фракционным или дисперсным составом, т.е. процентным содержанием частиц различного размера.

Сточные воды представляют собой полидисперсные гетерогенные (неоднородные) агрегативно-неустойчивые системы. В процессе осаждения размер, плотность, форма частиц, а также  физические свойства частиц системы  изменяются. Свойства сточных вод  отличаются от свойств чистой воды. Они имеют более высокую плотность  и вязкость.

В промышленности воду используют как сырье и источник энергии, как хладагент, растворитель, экстрагент, для транспортирования сырья и материалов. Воду, используемую в промышленности, подразделяют на охлаждающую, технологическую и энергетическую. В промышленности 65-80% расхода воды потребляется для охлаждения жидких и газообразных продуктов в теплообменных аппаратах. В этих случаях вода не соприкасается с материальными потоками и не загрязняется, а лишь нагревается. Технологическую воду подразделяют на средообразующую, промывающую и реакционную.

Средообразующую воду используют для растворения и образования пульп, при обогащении и переработке руд, гидротранспорте продуктов и отходов производства; промывающую – для промывки газообразных (абсорбция), жидких (экстракция) и твердых продуктов и изделий; реакционную – в составе реагентов, а также при отгонке и других процессах. Технологическая вода непосредственно контактирует со средой. Энергетическая вода потребляется для получения пара и нагревания оборудования, помещений, продуктов.

В соответствии с Санитарными  правилами и нормами СанПиН 2.1.4.559-96 питьевая вода должна быть безопасна  в эпидемическом и радиационном отношении, безвредна по химическому  составу и должна иметь благоприятные  органолептические свойства. Под  качеством воды в целом понимается характеристика ее состава и свойств, определяющая ее пригодность для конкретных видов водопользования; при этом показатели качества представляют собой признаки, по которым производится оценка качества воды.

По санитарному признаку устанавливаются микробиологические и паразитологические показатели воды (число микроорганизмов и число бактерий группы кишечных палочек в единице объема). Токсикологические показатели воды, характеризующие безвредность ее химического состава, определяются содержанием химических веществ, которое не должно превышать установленных нормативов. Наконец, при определении качества воды учитываются органолептические (воспринимаемые органами чувств) свойства: температура, прозрачность, цвет, запах, вкус, жесткость.

Следует отметить некоторые  показатели, связанные с кислотностью. Наиболее известен водородный показатель pH, который является мерой активности (в случае разбавленных растворов совпадает с концентрацией) ионов водорода в растворе, количественно выражающей его кислотность. Вычисляется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на литр:

.

Другим важным показателем  является БПК (биохимическое потребление кислорода). Определяется как количество кислорода, которое требуется для окисления находящихся в воде органических веществ в аэробных условиях в результате происходящих в воде биологических процессов. Существует также показатель ХПК (химическое потребление кислорода), который определяется как мера общей загрязнённости воды содержащимися в ней органическими и неорганическими восстановителями, реагирующими с сильным окислителем.

В зависимости от степени  минерализованности (в г/л) воды делятся: на пресные (с содержанием солей <1); солоноватые (1-10); соленые (10-50) и рассолы (>50). В свою очередь пресные воды подразделяются на воды малой минерализованности (до 200 мг/л); средней минерализованности (200-500 мг/л) и повышенной минерализованности (500-1000 мг/л). По преобладающему аниону все воды делятся на гидрокарбонатные, сульфатные и хлоридные.

Жесткость природных вод  обусловлена присутствием в них  солей кальция и магния и выражается концентрацией ионов Са2+ и Mg2+ в ммоль экв/л. Различают общую карбонатную и некарбонатную жесткость. Общая жесткость представляет сумму двух жесткостей: карбонатная – связана с присутствием в воде бикарбонатов кальция и магния, а некарбонатная – сульфитов, хлоридов, нитратов кальция и магния.

Информация о работе Методы анализа и контроля компонентов окружающей среды