Методы анализа и контроля компонентов окружающей среды

Автор работы: Пользователь скрыл имя, 24 Декабря 2013 в 10:10, реферат

Краткое описание

Система экологического мониторинга не ограничивается только сбором информации об окружающей среде. Экологический мониторинг сам по себе является исследованием, которое включает в себя этапы сбора, упорядочивания, анализа данных, прогнозирования и принятия управленческого решения. Постоянный мониторинг лежит также в основе функционирования кадастровых систем, геоинформационных систем, а также экосистемного анализа. Данные экологического мониторинга используются при проведении экологической экспертизы (например, для оценки воздействия на окружающую среду (ОВОС)), экологического аудита и в других смежных областях.

Содержание

Введение 3
1. Оценка приоритетных контролируемых параметров природной среды 5
1. 1 Контроль качества воздуха 6
1. 1 Контроль качества воды 14
1. 2 Контроль качества почвы 20
1. 3 Контроль качества продуктов питания 22
1. 4 Контроль воздействия физических факторов 23
1. 5 Контроль воздействия ксенобиотиков 31
1. 6 Контроль воздействия неорганических соединений 43
Заключение 44
Список используемой литературы 45

Вложенные файлы: 1 файл

методы анализа и контроля компонентов ос.docx

— 121.33 Кб (Скачать файл)

Источники освещения:

      1. Лампы накаливания. Превращение электрической энергии в световую происходит в них за счет нагревания нити накала до температуры свечения.
      2. Газоразрядные люминесцентные лампы. Электрическая энергия непосредственно переходит в световое излучение за счет свечения специальных веществ – люминофоров. В зависимости от состава люминофора получается различная цветность свечения; т.е. различный спектр света. Это качество дает возможность создавать нужный спектр в зависимости от характера выполняемой работы. В настоящее время промышленность выпускает люминесцентные лампы нескольких типов:
        • ЛБ (белого света);
        • ЛД (дневного света);
        • ЛХБ (холодного белого света);
        • ЛТБ (теплого белого света).

Причем три последних  выпускаются в двух модификациях — обычные и с улучшенной цветностью (ЛД2, ЛХБЦ и ЛТБЦ). Газоразрядные лампы имеют различную форму: трубчатые, кольцевые, у-образные, волнообразные и др.

Люминесцентные  лампы имеют ряд преимуществ перед лампами накаливания: они более экономичны, имеют большую световую отдачу, более долговечны, меньше нагреваются, разнообразны по спектру. Вместе с тем они имеют и свои недостатки, среди которых наиболее существенным являются колебания светового потока, т.к. газоразрядные лампы не обладают достаточным послесвечением и повторяют колебания переменного тока электросети. Колебания светового потока вызывают так называемый стробоскопический эффект, т.е. искажение зрительного восприятия движущихся или вращающихся предметов (рябит в глазах), впечатление неподвижности или вращения в другом направлении. При включении рядом расположенных люминесцентных ламп в разные фазы электросети стробоскопический эффект значительно снижается, а при включении в сеть постоянного тока полностью исчезает.

      1. Эритемные лампы. Излучают преимущественно ультрафиолетовые лучи, обладающие большой биологической активностью. Такие лампы применяются либо в системе общего освещения непосредственно в рабочих помещениях, либо в специальных помещениях, предназначенных для кратковременного, но более интенсивного облучении рабочих после смены – в фотариях.

Измерения освещенности должны проводиться по ГОСТ 24940-96 «Здания  и сооружения. Методы измерения освещенности». Одну из основных ролей в рациональном освещении играет уровень освещенности, измеряемый в люксах (люкс – единица освещенности, равная световому потоку в 1 лм (люмен), падающему на освещаемую поверхность в 1 м2). Равномерность освещения также имеет существенное гигиеническое значение. Источники света следует размещать так, чтобы они сами или отраженные от блестящих поверхностей лучи не слепили глаза, чтобы при выполнении работы голова, руки или другие части тела, оборудование или сами изделия не затеняли рассматриваемую поверхность.

Шум и вибрация. Шум, вибрация и ультразвук объединяются общим принципом их образования: все они являются результатом колебания тел, передаваемого непосредственно или через газообразные, жидкие и твердые среды. Отличаются они друг от друга лишь по частоте этих колебаний и различным восприятием их человеком.

Колебания твердых тел  или передаваемые через твердые  тела (машины, строительные конструкции  и т.п.) называются вибрацией. Вибрация воспринимается человеком как сотрясение при общей вибрации с частотой от 1 до 100 Гц, а при локальной (местной) – от 10 до 1000 Гц. Вибрации, источником которых является технологическое оборудование, рельсовый транспорт, строительные машины и тяжелый автотранспорт, распространяются по грунту. Протяженность зоны воздействия вибрации определяется величиной их затухания в грунте, которая составляет 1 дБ/м.

Шум создается транспортными  средствами, промышленным оборудованием, санитарно-техническими установками. На городских магистралях и в  прилегающих к ним зонах уровни звука могут достигать 70-80 дБ.

Шум является внешним раздражителем, который воспринимается и анализируется  корой головного мозга, в результате чего при интенсивном и длительно  действующем шуме наступает перенапряжение центральной нервной системы, распространяющееся не только на специфические слуховые центры, но и на другие отделы головного  мозга. Например, у рабочих, длительное время подвергавшихся воздействию  интенсивного шума, особенно высокочастотного, отмечаются жалобы на головные боли, головокружение, шум в ушах, а при медицинских  обследованиях выявляются язвенная болезнь, гипертония, гастриты и другие хронические заболевания.

Колебания, передаваемые от вибрирующей поверхности телу человека, вызывают раздражение многочисленных нервных окончаний в стенках кровеносных сосудов, мышечных и других тканях. Ответные импульсы приводят к нарушениям обычного функционального состояния некоторых внутренних органов и систем, и в первую очередь периферических нервов и кровеносных сосудов, вызывая их сокращение. Сами же нервные окончания, особенно кожные, также подвергаются изменению – становятся менее восприимчивыми к раздражениям. Все это проявляется в виде беспричинных болей в руках, особенно по ночам, онемения, ощущения «ползания мурашек», внезапного побеления пальцев, снижения всех видов кожной чувствительности (болевой, температурной, тактильной). Весь этот комплекс симптомов, характерный для воздействия вибрации, получил название вибрационной болезни. Больные вибрационной болезнью обычно жалуются на мышечную слабость и быструю утомляемость. У женщин от воздействия вибрации, помимо этого, нередко появляются нарушения функционального состояния половой сферы.

У работающих с ультразвуковыми  установками возможны функциональные нарушения систем и органов. Частые жалобы на головные боли, быструю утомляемость, потерю слуховой чувствительность. Ультразвук может действовать на человека, как  через воздушную среду, так и  через жидкую и твердую.

Действие инфразвука на организм человека приводит к функциональным расстройствам, которые проявляются  в виде снижения внимания, нарушения  координации движений, повышенной утомляемости, чувства тошноты вызывает утомление, головную боль, болезнь типа морской, а в некоторых случаях обмороки и параличи. Источники инфразвука – механизмы, транспорт и медленно работающие машины.

Неионизирующее  излучение. Данный вид физических воздействий различают по частоте колебания и длине волны. Это излучения:

  1. С частотой 50 Гц (промышленная частота) и длиной волны выше 10 км (электрические поля электромагнитного излучения – ЛЭП, РУ).
  2. Радиоволны средней длины (от 10 км до 100 м, с частотой колебания до 3 МГц, применяемые в радиотехнике, плавке металлов, сушке, закалке сталей).
  3. Короткие радиоволны (от 100 м до 10 м).
  4. Ультракороткие (от 10 м до 1 м ультравысокой частоты – УВЧ).
  5. Колебания с длиной волны от 1 мм до 1 м – с частотой от 300 до 300 000 МГц (СВЧ, использующиеся в радиолокации, некоторых измерительных приборах, электробытовых приборах).
  6. Инфракрасные излучения (тепловые, характеризуются длиной волны от 1000 мкм до 0,76 мкм).
  7. Видимый свет (длина волны 0,76-0,38 мкм).
  8. Ультрафиолетовые лучи (0,38-0,005 мкм).

У каждого вида излучений  свои источники и свой физиологический  эффект. Параллельное развитие гигиенической  науки в СССР и западных странах  привело к формированию разных подходов к оценке действия ЭМИ. Для части  стран постсоветского пространства сохраняется преимущественно нормирование в единицах плотности потока энергии (ППЭ), а для США и стран ЕС типичным является оценка удельной мощности поглощения (SAR).

Нахождение в зоне с  повышенными уровнями ЭМП в течение  определённого времени приводит к ряду неблагоприятных последствий: наблюдается усталость, тошнота, головная боль. При значительных превышениях  нормативов возможны повреждение сердца, мозга, центральной нервной системы. Излучение может влиять на психику  человека, появляется раздражительность, человеку трудно себя контролировать. Возможно развитие трудно поддающиеся лечению заболеваний, вплоть до раковых. В частности, корреляционный анализ показал прямую средней силы корреляцию заболеваемости злокачественными заболеваниями головного мозга с максимальной нагрузкой от ЭМИ даже от использования такого маломощного источника, как мобильные радиотелефоны.

      1. Контроль воздействия ксенобиотиков

Отдельно стоит сказать  о мониторинге искусственных  химических веществ – ксенобиотиков. В настоящее время в результате хозяйственной деятельности человека в биосфере циркулирует большое количество различных чужеродных для человека соединений, многие из которых имеют исключительно высокую токсичность [19, 42]. Они наиболее опасны как для человека, так и для природной среды, т.к. не включены в естественные процессы утилизации химических соединений. Из органических соединений – загрязнителей выделены «приоритетные», которые представляют наибольшую опасность для человека сейчас и в будущем. Это прежде всего полихлорированные диоксины, дибензофураны и другие родственные хлорсодержащие органические соединения. За высокую токсичность их относят к особому классу загрязняющих веществ – экотоксикантам или суперэкотоксикантам [27].

Диоксины – полихлорированные соединения, содержащие ароматические ядра, являются суперэкотоксикантами. Диоксины присутствуют в природной среде уже несколько десятилетий, со времени начала производства хлорорганических соединений. Они обладают широким спектром биологического действия на человека и животных.

В малых дозах диоксины вызывают мутагенный эффект, отличаются кумулятивной способностью, ингибирующим и индуцирующим действием по отношению к некоторым ферментам живого организма, вызывают у человека повышение аллергической чувствительности к различным ксенобиотикам. Их опасность очень велика даже в сравнении с тысячами других токсичных примесей. Комплексный характер действия этой группы соединений приводит к подавлению иммунитета, поражению органов и истощению организма.

В природной среде эти  суперэкотоксиканты достаточно устойчивы  и могут длительное время находиться в ней без изменений. Для них, по существу, отсутствует предел токсичности (явление так называемой сверхкумуляции), а понятие ПДК теряет смысл. Организм человека подвержен действию диоксинов через воздух (аэрозоли), воду, а также пищевые продукты. Они могут накапливаться в жирах (в ходе их технологической переработки) и не разрушаются при кулинарной (тепловой) обработке, сохраняя свои токсические свойства.

Уже в 30-х гг. двадцатого столетия появились первые сведения о заболеваниях людей, вызванных воздействием сильных  антисептиков – хлорфенолов. Тогда ошибочно полагали, что болезнь происходит из-за контакта с этим основным продуктом, но не было данных о воздействии диоксинов. Во время войны во Вьетнаме (1962-1971 гг.) американские войска широко использовали дефолианты в борьбе с партизанами. Дефолиант вызывает ускоренное опадание листьев деревьев. Всего над джунглями было распылено 57 тысяч тонн этого препарата, в котором в виде примеси содержалось до 170 кг диоксина. Сейчас этот дефолиант известен под названием 2,4-D (2,4–дихлорфеноуксусная кислота). Через несколько лет в г. Севезо (Италия) на химическом заводе произошла катастрофа, в результате которой сотни тонн пестицида 2,4,5-трихлорфеноуксусной кислоты (2,4,5-Т) были распылены в окрестностях предприятия. Погибло много людей и сельскохозяйственных животных. В выбросе оказалось около 3–5 кг диоксинов, о чем тогда не было известно.

После этих событий покров тайны с диоксинов был снят. Появились сообщения о содержании диоксинов в различных препаратах, о накоплении их в экосистемах. Диоксины стали находить в выхлопных газах автомобильного транспорта, продуктах сжигания мусора, в грудном молоке женщин (1984 г.), в выбросах целлюлозно-бумажной промышленности (1985 г. – США, Швеция). Можно сказать, что диоксины и родственные им по структуре соединения непрерывно генерируются человеческой цивилизацией и поступают в биосферу. Уместно отметить, что ни в тканях эскимосов, замерзших 400 лет назад, ни в тканях мумий индейцев, найденных на территории современного Чили, не удалось обнаружить диоксины даже в следовых количествах. Они порождение современной цивилизации, результат хозяйственной деятельности человека в промышленно развитых странах.

Дибензо-n-диоксины относятся к гетероциклическим полихлорированным соединениям, в структуре которых присутствуют два ароматических кольца, связанных между собой двумя кислородными мостиками. Аналогичные им дибензофураны содержат один атом кислорода. В родственных полихлорированных бифенилах два ароматических кольца связаны обычной химической связью.

Все перечисленные соединения характеризуются высокой химической устойчивостью. Наряду с высокой  липофильностью, т.е. способностью растворяться в органических растворителях и удерживаться жировыми и жироподобными тканями, диоксины обладают высокой адгезией к частицам почвы, золы, донным отложениям. Диоксины как бы концентрируются на этих частицах, переходя из водной среды во взвеси, затем в микроорганизмы. Этому способствует и эффект высаливания, если в водной среде присутствуют неорганические соли.

Токсическое действие соединений зависит от числа атомов хлора  и их положения в структуре  молекулы. Максимальной токсичностью обладает 2,3,7,8–тетрахлордибензодиоксин (2,3,7,8–ТХДД), затем 1,2,3,7,8–пентахлордибензодиоксин. Близки к ним производные фуранового ряда, в частности 2,3,7,8–ТХДФ, и его Cl5–изомер. Эти соединения имеют токсичность на много порядков выше, чем, например, широко известный ДДТ (1,1,1-Трихлор-2,2-бис(n-хлорфенил)этан).

Когда концентрация ДДТ в  молоке кормящих матерей США превысила  ПДК в 4 раза, ВОЗ (Всемирная организация  здравоохранения) запретила ДДТ. Последовательность запрета: Новая Зеландия, СССР, Венгрия, Швеция, Дания, Финляндия и др. Хотя были отступления от этого запрета: в СССР еще долго опыляли тайгу ДДТ в борьбе с энцефалитным клещом. ДДТ до сих пор используется в некоторых штатах Австралии, Китая для опыления плодовых деревьев. Производит ДДТ, как и прежде, Индия – до 4200 тонн ежегодно (1980).

Информация о работе Методы анализа и контроля компонентов окружающей среды