Применение функций в экономике

Автор работы: Пользователь скрыл имя, 18 Июня 2014 в 23:37, доклад

Краткое описание

Цель работы:
Описать применение функций в экономике.
Задачи работы:
Познакомиться в дополнительной литературе с применением функций в экономике.
Описать функцию полезности.
Описать производственную функцию.
Описать функцию спроса, потребления, предложения.

Содержание

Введение
1. Функция полезности
2. Производственная функция
3. Функция потребления, спроса и предложения

Вложенные файлы: 1 файл

16908.rtf

— 5.46 Мб (Скачать файл)

Пример2. Для моделирования отдельного региона или страны в целом (то есть для решения задач на макроэкономическом, а также на микроэкономическом уровне) часто используется ПФ вида y= , где а0, а1, а2 - параметры ПФ. Это положительные постоянные (часто а1 и а2 таковы, что а1+а2=1). ПФ только что приведенного вида называется ПФ Кобба-Дугласа (ПФКД) по имени двух американских экономистов, предложивших ее использовать в 1929 г.

ПФКД активно применяется для решения разнообразных теоретических и прикладных задач благодаря своей структурной простоте. ПФКД принадлежит к классу, так называемых, мультипликативных ПФ (МПФ). В приложениях ПФКД х1=К равно объему используемого основного капитала (объему используемых основных фондов - в отечественной терминологии), - затратам живого труда, тогда ПФКД приобретает вид, часто используемый в литературе:

 

Y= .

 

Пример3. Линейная ПФ (ЛПФ) имеет вид: (двухфакторная) и (многофакторная). ЛПФ принадлежит к классу так называемых аддитивных ПФ (АПФ). Переход от мультипликативной ПФ к аддитивной осуществляется с помощью операции логарифмирования. Для двухфакторной мультипликативной ПФ

 

этот переход имеет вид: . Вводя соответствующую замену, получим аддитивную ПФ .

Для производства конкретного продукта требуется сочетание разнообразных факторов. Несмотря на это, различные производственные функции обладают рядом общих свойств.

Для определенности ограничимся производственными функциями двух переменных . Прежде всего необходимо отметить, что такая производственная функция определена в неотрицательном ортанте двумерной плоскости, то есть при . ПФ удовлетворяет следующему ряду свойств:

  1. без ресурсов нет выпуска, т.е. f(0,0,a)=0;

при отсутствии хотя бы одного из ресурсов нет выпуска, т.е. ;

с ростом затрат хотя бы одного ресурса объем выпуска растет;

с ростом затрат одного ресурса при неизменном количестве другого ресурса объем выпуска растет, т.е. если x>0, то ;

с ростом затрат одного ресурса при неизменном количестве другого ресурса величина прироста выпуска на каждую дополнительную единицу i-го ресурса не растет (закон убывающей эффективности), т.е. если то ;

при росте одного ресурса предельная эффективность другого ресурса возрастает, т.е. если x>0, то ;

ПФ является однородной функцией, т.е. ; при р>1 имеем рост эффективности производства от роста масштаба производства; при р<1 имеем падение эффективности производства от роста масштаба производства; при р=1 имеем постоянную эффективность производства при росте его масштаба.

Производственные функции позволяют количественно проанализировать важнейшие экономические зависимости в сфере производства. Они дают возможность оценить среднюю и предельную эффективность различных ресурсов производства, эластичность выпуска по различным ресурсам, предельные нормы замещения ресурсов, эффект от масштаба производства и многое другое.

Задача 1. Пусть дана производственная функция, связывающая объем выпуска продукции предприятия с численностью рабочих , производственными фондами и объемом используемых станко-часов

 

.

 

Необходимо определить максимальный выпуск продукции при ограничениях

 

,

.

 

Решение. Для решения задачи составляем функцию Лагранжа

 

,

 

дифференцируем ее по переменным , , , и полученные выражения приравниваем к нулю:

 

 

Из первого и третьего уравнений следует, что , поэтому

 

 

откуда получим решение , при котором у=2. Поскольку, например, точка (0,2,0) принадлежит допустимой области и в ней у=0, то делаем вывод, что точка (1,1,1) - точка глобального максимума. Экономические выводы из полученного решения очевидны.

Так же следует отметить, что производственная функция описывает множество технически эффективных способов производства (технологий). Каждая технология характеризуется определенной комбинацией ресурсов, необходимых для получения единицы продукции. Хотя производственные функции различны для разных видов производств, все они обладают общими свойствами:

  1. Существует предел увеличения объема производства, который может быть достигнут увеличением затрат одного ресурса при прочих равных условиях. Это значит, что на фирме при данном количестве станков и производственных помещений есть предел увеличения производства посредством привлечения большего количества рабочих. Прирост выпуска при увеличении численности занятых будет приближаться к нулю.
  2. Существует определенная взаимодополняемость (комплементарность) факторов производства, но без сокращения объемов производства возможна и определенная взаимосвязь этих факторов. Например, эффективен труд работников, если они обеспечены всеми необходимыми орудиями труда. При отсутствии таких орудий объем может быть сокращен или увеличен при росте числа занятых. В данном случае происходит замена одного ресурса другим.
  3. Способ производства А считается технически более эффективным, по сравнению со способом Б, если он предполагает использование хотя бы одного ресурса в меньшем, а всех остальных - не в большем количестве, чем способ Б. Технически неэффективные способы не используются рациональными производителями.
  4. Если способ А предполагает использование одних ресурсов в большем, а других - в меньшем количестве, чем способ Б, эти способы несравнимы по технической эффективности. В этом случае оба способа считаются технически эффективными и включаются в производственную функцию. Какой из них выбирать - зависит от соотношения цен применяемых ресурсов. Этот выбор основывается на критериях экономической эффективности. Следовательно, техническая эффективность не тождественна экономической эффективности.

Техническая эффективность - это максимально возможный объем производства, достигаемый в результате использования имеющихся ресурсов. Экономическая эффективность - это производство данного объема продукции с минимальными издержками. В теории производства традиционно используются двухфакторная производственная функция, в которой объем производства, является функцией использования ресурсов труда и капитала:

 

Q = f (L,K).

 

Графически каждый способ производства (технология) может быть представлен точкой, характеризующей минимально необходимый набор двух факторов, нужных для производства данного объема продукции (рис. 3).

На рисунке изображены различные способы производства (технологии): Т1, Т2, Т3, характеризующиеся разными соотношениями в применении труда и капитала: T1 = L1 K1; T2 = L2 K2; T3 = L3 K3. наклон луча показывает размеры применения различных ресурсов. Чем выше угол наклона луча, тем больше затраты капитала и меньше затраты труда. Технология Т1 более капиталоемкая, чем технология Т2.

 

Рис. 3. Технология и производственная функция (изокванта).

 

Если соединить разные технологии линией, получится изображение производственной функции (линии равного выпуска), которая получила название изокванты. На рисунке показано, что объем производства Q может быть достигнут при разных комбинациях факторов производства (Т1,Т2,Т3, и т.д.). Верхняя часть изокванты отражает капиталоемкие, нижняя - трудоемкие технологии.

Карта изоквант - это совокупность изоквант, отражающих максимально достижимый уровень выпускаемой продукции при любом данном наборе факторов производства. Чем дальше расположена изокванта от начала координат, тем больше объем выпуска. Изокванты могут проходить через любую точку пространства, где находятся два фактора производства. Смысл карты изоквант аналогичен смыслу карты кривых безразличия для потребителей.

 

Рис.4. Карта изоквант в общем виде

 

Изокванты обладают следующими свойствами:

  1. Изокванты не пересекаются.
  2. Большей удаленности изокванты от начала координат соответствует больший уровень выпускаемой продукции.
  3. Изокванты - понижающиеся кривые, имеют отрицательный наклон.

Изокванты являются подобием кривых безразличия с той лишь разницей, что они отражают ситуацию не в сфере потребления, а в сфере производства.

Отрицательный наклон изоквант объясняется тем, что увеличение использования одного фактора при определенном объеме выпуска продукта всегда будет сопровождаться уменьшением количества другого фактора.

Рассмотрим возможные карты изоквант

На рис. 5 изображены некоторые карты изоквант, характеризующие различные ситуации, возникающие при производственном потреблении двух ресурсов. Рис. 5,а соответствует абсолютному взаимозамещению ресурсов. В случае, представленном на рис. 5,б, первый ресурс может быть полностью замещен вторым: точки изоквант, расположенные на оси х2 показывают количество второго ресурса, позволяющее получить тот или иной выход продукта без использования первого ресурса. Использование первого ресурса позволяет сократить затраты второго, но полностью заменить второй ресурс первым невозможно. Рис. 5,в изображает ситуацию, в которой оба ресурса необходимы и ни один из них не может быть полностью замещен другим. Наконец, случай, представленный на рис. 5,г, характеризуется абсолютной взаимодополняемостью ресурсов.

 

Рис. 5. Примеры карт изоквант

 

Для объяснения производственной функции вводятся понятие издержки.

В самом общем виде издержки можно определить как совокупность расходов, которые несет производитель при выпуске определенного объема продукции.

Существует их классификация по временным периодам, в течение которых фирма принимает то или иное производственное решение. Чтобы изменить объем производства, фирме приходится корректировать величину и состав своих затрат. Одни затраты можно изменить довольно быстро, другие требуют для этого определенного времени.

Краткосрочный период -- это временной интервал, недостаточный для модернизации или ввода в действие новых производственных мощностей предприятия. Однако в этот период фирма может увеличить объем выпуска продукции, повысив степень интенсивности использования уже имеющихся производственных мощностей (например, нанять дополнительных рабочих, закупить большее количество сырья, увеличить коэффициент сменности обслуживания оборудования и т.п.). Отсюда следует, что в краткосрочном периоде затраты могут быть либо постоянными, либо переменными.

Постоянные издержки (TFC) представляют собой сумму затрат, которые не зависят от изменения объема производства. Постоянные издержки связаны с самим существованием фирмы и должны быть оплачены, даже если фирма ничего не производит. Они включают в себя амортизационные отчисления на здания и оборудование; налог на имущество; страховые платежи; ремонт и эксплуатационные расходы; платежи по облигациям; жалованье высшему управленческому персоналу и др.

Переменные издержки (TVC) -- это стоимость ресурсов, которые используются непосредственно для производства данного объема продукции. Элементами переменных издержек являются затраты на сырье, топливо, энергию; оплата транспортных услуг; оплата большей части трудовых ресурсов (заработная плата). В отличие от постоянных переменные издержки зависят от объема выпуска продукции. Однако следует отметить, что прирост суммы переменных издержек, связанный с увеличением объема производства на 1 единицу, не является постоянным.

В начале процесса увеличения производства переменные издержки будут какое-то время возрастать уменьшающимися темпами; и так будет продолжаться до конкретной величины объема производимой продукции. Затем переменные издержки начнут увеличиваться нарастающими темпами в расчете на каждую последующую единицу производимой продукции. Такое поведение переменных издержек обусловливается законом убывающей отдачи. Увеличение предельного продукта в течение какого-то времени будет вызывать все меньший и меньший прирост переменных ресурсов для производства каждой дополнительной единицы продукции.

А поскольку все единицы переменных ресурсов покупаются по одной и той же цене, это значит, что сумма переменных издержек будет возрастать уменьшающимися темпами. Но как только предельная производительность начнет падать в соответствии с законом убывающей отдачи, все большее и большее количество дополнительных переменных ресурсов придется использовать для производства каждой последующей единицы продукции. Сумма переменных издержек, таким образом, будет увеличиваться нарастающими темпами

Сумма постоянных и переменных издержек, связанных с производством определенного количества продукции, называется совокупными издержками (ТС). Таким образом, получаем следующее равенство:

 

ТС - TFС + TVC.

 

В заключение отметим, что производственные функции можно использовать для экстраполяции экономического эффекта производства в заданный период будущего. Как и в случае обычных эконометрических моделей, экономический прогноз начинают с оценки прогнозных значений факторов производства. При этом можно использовать наиболее подходящий в каждом отдельном случае способ экономического прогноза.

 

3. Функции потребления, спроса и предложения

 

Производство является исходным пунктом создания материальных и нематериальных благ и главным источником удовлетворения нужд людей. Оно находится между желаниями людей и их исполнением, создает поле для потребления.

Потребление - это процесс удовлетворения потребностей людей, состоящий в использовании продуктов производства по их назначению. Сбережения - это та часть дохода, которая в данный момент не потребляется. Это не что иное, как отсроченное потребление. За счет сбережений обеспечиваются в будущем производственные и потребительские нужды. Сбережения производятся фирмами (с целью последующего инвестирования накопленного дохода в расширение масштабов производства), домашними хозяйствами и населением (для покупки земли, недвижимости, предметов длительного пользования). Потребление и сбережения находятся между собой в тесной связи и зависимости и формируются под влиянием одних и тех же факторов. Потребление используется для удовлетворения текущих нужд, сбережения - для будущих. Взаимосвязь располагаемого дохода и потребления образует функцию потребления.

Информация о работе Применение функций в экономике