Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Автор работы: Пользователь скрыл имя, 24 Декабря 2013 в 10:22, курсовая работа

Краткое описание

Рабочие площадки служат для размещения производственного оборудования на определенной высоте в помещении цеха промышленного здания. В конструкцию площадки входят колонны, балки, настил и связи. Система несущих балок стального покрытия называется балочной клеткой.
Вывод: стенка колонны толщиной 12 мм на срез проходит. Торец колонны фрезеруется, и поэтому толщина швов, соединяющих опорную плиту со стержнем колонны и ребрами, назначается конструктивно, равной kf = 8 мм. С целью укрепления стенки колонны и вертикальных ребер от возможной потери устойчивости снизу вертикальные ребра обрамляются горизонтальными ребрами толщиной tP = 8 мм.

Содержание

1. Исходные данные на проектирование стальной балочной клетки.
2. Расчет стальной балочной клетки.
2.1. Разработка вариантов стальной балочной клетки.
2.1.1. Вариант 1. Балочная клетка нормального типа.
2.1.2. Вариант 2. Балочная клетка усложненного типа.
2.2. Проектирование составной сварной главной балки.
2.2.1. Подбор сечения главной балки
2.2.2. Проверка прочности главной балки
2.2.3. Проверка прогиба главной балки.
2.2.4. Определение типа сопряжения вспомогательной и главной балок.
2.2.5. Изменение сечения главной балки.
2.2.6. Расчет поясных сварных швов.
2.2.7. Проверка на устойчивость сжатой полки.
2.2.8. Проверка устойчивости стенки балки.
2.2.9. Расчет опорного ребра жесткости главной балки.
2.2.10. Расчет болтового соединения
2.3. Проектирование колонны сплошного сечения
2.3.1. Расчетная длина колонны и сбор нагрузки
2.3.2. Подбор сечения колонны
2.3.3. Проверка устойчивости полки и стенки колонны.
2.3.4. Расчет базы колонны.
2.3.5. Расчет оголовка колонны.
Литература

Вложенные файлы: 1 файл

Документ Microsoft Word (2).doc

— 765.50 Кб (Скачать файл)

б) расчетную qб = q LH + mбн ggf = 14,885 × 0,875 + 0,093 × 1,05 = 13,12 кН/м

Максимальный изгибающий момент

Проверка нормальных напряжений

Rg gс = 1,1 × 230 = 253 МПа

s < gСRg - условие прочности выполняется с недонапряжением 3,7%.

Перерезывающая сила на опоре:

Qmax = qб L × 0,5= 13,12 ×2,5 × 0,5 = 16,4 кН

Проверка касательных  напряжений.

RS gс = 0,58 × 1,1 × 230 = 146,7 МПа >42,58 МПа - проверка удовлетворяется

Проверка прогиба.

- условие выполняется.

 

Расчет вспомогательной  балки

 

Агр = Lбн × Lн = 2,188 м2

 

 

 

 

Сбор нагрузки на вспомогательную  балку

Таблица 3

 

 

Наименование нагрузки

Нормативная нагрузка, кН/м2

gf

Расчетная нагрузка, кН/м2

1

Временная нагрузка Р

РnLбн = 12 × Агр = 12 × 2,188

26,256

1,2

31,507

2

Вес настила

gнLбнLн = 0,462 × 2,188

1,011

1,05

1,062

3

Вес балки настила

mбн gLбн = 9,5×9,81×10-3×2,5

0,233

1,05

0,245

4

Вес вспомогательной балки

mв gLн = 15,9×0,875×9,81×10-3

(принимаем вес двутавра № 16)

0,136

1,05

0,143

 

Итого (G+Р)

27,636

 

32,957


 

Средняя величина коэффициента  .

Изгибающий момент от расчетной  нагрузки при семи грузах в пролете

Мmax = 3(G+Р) ×3,063 - 5×0,875(G+Р) = 3,5×32,957×3,063 - 5× 0,875× 32,957 = 209,13 кН×м

Требуемый момент сопротивления  при с1= 1,1 в первом приближении

Требуемый момент инерции  по предельному прогибу (при пролете Lв =7 м )

По сортаменту принимаем  двутавр № 40Б1 ГОСТ 26020-83 (Jх = 15 750 см4, Wх = 803,6 см3, А = 61,25 см2, b = 165 мм, h = 39,2 см, tf = 10,5 мм, tw = 7,0 мм, m = 48,1 кг/м).

Уточним коэффициент с:

Аw = tw(h - 2tf) = 0,7×(39,2 - 2×1,05) = 25,97 см2

Аf = 0,5(А - Аw) = 0,5(61,25 - 25,97) = 17,655 см2

Þ с = с1 = 1,102

Уточним нагрузку на балку.

Вес вспомогательной балки

а) нормативный mв gLн =48,1×9,81×10-3×0,875 = 0,413 кН

б) расчетный mв gLнgf =0,413× 1,05 = 0,434 кН

Полная нагрузка (G+Р) с  учетом данных табл.3

а) нормативная 27,193 кН/м

б) расчетная 33,248 кН/м

Средняя величина коэффициента gf = 33,248/27,193 = 1,191

Изгибающий момент от расчетной нагрузки

Мmax = 3,5 × 33,765 × 3,063 - 5× 0,875 × 33,248 = 216,52 кН

Проверка прочности

Rg gс = 1,1 × 230 = 253 МПа - недонапряжение на 3,4 %

Проверка касательных напряжений t с учетом ослабления сечения на опоре выполняется при расчете стыка с главной балкой.

Проверка прогиба  балки

- проверка проходит

Проверка общей  устойчивости балки

Сжатый пояс в направлении из плоскости изгиба балки раскрепляется  балками настила, расстояние между которыми равно lef = Lн = 0,875 м

Наибольшее значение отношения lef к ширине сжатого пояса bf, при котором требуется проверка общей устойчивости, определяется по формуле:

- расчет на общую устойчивость  балки не требуется

Высота покрытия по главным балкам

hп = tн + hбн + hв = 6 + 100 + 392 = 498 мм

Расход стали на настил, балки  настила и вспомогательные балки на 1 м2 балочной клетки

m1I = r tн + mб/Lн + mв/Lбн = 7850 × 0,006+ 9,5/0,875 + 48,1/2,5 = 77,2  кг/м2.

 

2.1.3. Сравнение вариантов балочной  клетки.

 

Расход стали на 1 м2 площади балочной клетки покрытия по главным балкам:

  • по первому варианту - m1 = 118,94 кг/м2
  • по второму варианту - m1I = 77,2 кг/м2

Вывод: по расходу стали более экономичен второй вариант. Поэтому к дальнейшему проектированию принимаем второй вариант усложненной балочной клетки. Тип сопряжение вспомогательной и главной балок определится после расчета высоты главной балки.

 

2.2. Проектирование составной  сварной главной балки.

 

Разрезная балка загружена  сосредоточенными нагрузками. Нагрузки на балку передаются в местах опирания на нее вспомогательных  балок. Сосредоточенные силы подсчитываются по грузовой площади:

Агр = Lв Lбн = 7× 2,5 = 17,5 м2

 

Сбор нагрузки на главную балку

Таблица 5

 

Наименование нагрузки

Нормативная нагрузка, кН/м2

gf

Расчетная нагрузка, кН/м2

1

Временная нагрузка

Р = Рн × Агр = 12 × 17,5

210,0

1,2

252

2

Собственный вес настила и балок

Gбн = mgAгр=77,2×9,81×10-3 ×17,5

13,25

1,05

13,91

3

Собственный вес главной балки (3% от временной нагрузки)

Gтр=0,02×210

6,3

1,05

6,615

 

Итого G+Р

229,55

 

272,525


Коэффициент

2.2.1. Подбор сечения главной балки

 

Сечение составной сварной балки  состоит из трех листов: вертикального - стенки и двух горизонтальных - полок (рис. 9).

Расчетный изгибающий момент

Мmax = 9(G+P)Lбн - 4,5(G+P)Lбн = 4,5(G+P)Lбн = 4,5×272,525×2,5 = 3065,91 кН×м

Для принятой толщины листов полок tf ≤ 20 мм расчетное сопротивление стали С375 равно Rу =345 МПа. Коэффициент условия работы gс =1. В первом приближении с1 = 1,1.

Требуемый момент сопротивления:

Высоту сечения балки h предварительно определим по соотношению между hоптW, hопт,f и hmin, где hоптW - оптимальная высота сечения из условия прочности; hопт,f - оптимальная высота сечения из условия жесткости; hmin - оптимальная высота сечения из условия минимальной жесткости, при обеспечении прочности.

1) оптимальная высота  балки из условия прочности:

,

где - отношения высоты балки к толщине стенки в пределах kW = 125…140. Принимаем kW = 130.

2) оптимальная высота  балки из условия жесткости:

,

где , n0 = 231,94 - для пролета L = 17,5 м

3) высота балки из  условия минимальной жесткости  при обеспечении прочности:

Выбор высоты балки

Т.к. hmin < hоптW < hопт,f , принимаем h = hоптW

Высота главной балки  должна соответствовать наибольшей строительной высоте перекрытия согласно заданию:

h ≤ hc max - tн,

где tн - толщина настила.

Наибольшая строительная высота перекрытия определяется разностью отметок верха настила и габарита помещения под перекрытием:

hc max = 8,4 - 6,6 = 1,8 м

Т.к. h = 1199 см < hc max - tн = 1800 - 6 = 1794 мм -оставляем выбранную высоту h = 1199 см.

Принимаем толстолистовую сталь шириной 1250 мм. С учетом обрезки кромок с двух сторон по 5 мм hW = 1250 -10 = 1240 мм.

По коэффициенту kW = 130 определяем толщину стенки: tW = hW /kW = 1240/130 = 9, 5 мм. Принимаем tW =10 мм. Толщину полок назначим равной tf =18 ≤ 3 tW = 30 мм.

Полная высота балки:

h = hW + 2 tf = 1240 + 2×18 = 1276 мм

Момент инерции стенки:

Требуемый момент инерции  полок:

Jтр = Jтр max - JW,

где Jтр max определим по двум значениям из условий

а) прочности Jтр = 0,5Wтр h = 0,5×8848,2×127,6 = 564512,2 см4

б) жесткости Jтр = 530132 см4

Jтр = 564515,2 - 158885 = 405630,2 см4

Требуемая площадь сечения  полки:

 

Толщина стенки из условия  обеспечения ее местной устойчивости:

В расчете было принято 1,8 см, что больше tf = 1,42 см.

Ширину полки назначаем  из условия  или bf = 427 …256 мм. Принимаем bf =360 мм, что соответствует ширине листа универсальной стали по сортаменту. Уточним собственный вес балки по принятым размерам.

Площадь поперечного сечения:

А = 2Аf + АW = 2× 1,8 × 36 + 1,0×124 = 253,6 см2

Вес погонного метра  балки:

gг = gS Аy = 77 × 0,02536×1,03 = 2,01 кН/м,

где gS= 77 кН/м - удельный вес стали;

y = 1,03 - конструктивный коэффициент, учитывающий вес ребер жесткости и сварных швов.

Вес главной балки на участке между вспомогательными балками:

Gг = gг Lбн = 2,01 × 2,5 = 5,025 кН

Уточним нагрузки на балку, полученные в табл.5.

Нормативная Рn + Gn = 210,0 + 13,25 + 5,025 = 228,275 кН

Расчетная Р + G = 252 + 13,9 + 5,33 = 271,23 кН

Уточним усилия. Изгибающие моменты от нормативных и расчетных нагрузок

Мn max = 4,5(Gn +Pn )Lбн = 4,5×228,275×2,5 = 2568,09 кН×м

Мmax = 4,5(G+P)Lбн = 4,5×271,23×2,5 = 3051,4 кН×м

Перерезывающая сила на опоре

Qmax = 3(G+P)= 3×271,23 = 813,69 кН

Геометрические характеристики сечения балки

Момент инерции

Момент сопротивления 


Найдем отношение площадей полки  и стенки

Найдем коэффициент с = 1,118. Т.к. в балке имеется зона чистого изгиба, принимаем с1 = с1m = 0,5(1+с) = 1,059

 

2.2.2. Проверка прочности главной  балки

 

1) Нормальные напряжения

 < Rg gс =379,5 МПа

Недонапряжение не должно превышать 5% : (379,5-357,6)100% /379,5 = 5,1%

2) Касательные напряжения (проверяются в месте крепления опорного ребра без учета работы на срез полок

RS gс = 0,58×345×1=200,1 МПа - проверка удовлетворяется

 

 

2.2.3. Проверка прогиба главной  балки.

 

- условие жесткости балки  удовлетворяется.

 

2.2.4. Определение типа сопряжения  вспомогательной и главной балок.

 

Суммарная высота элементов перекрытия: настила, балки настила, вспомогательной и главной балок

Sh= tН + hбн + hв + hг = 6 + 100 + 392 + 1276 = 1774 мм

Ранее была найдена наибольшая строительная высота перекрытия hc,max = =1,8 м. Принимаем пониженное сопряжение вспомогательной и главной балок.

2.2.5. Изменение сечения главной  балки.

 

С целью экономии материала уменьшаем  сечение приопорного участка  балки за счет уменьшения ширины поясов на участке балки от опоры до сечения, расположенного на расстоянии равном 1/6 пролета балки: 17,5/6 = 2,92 м. Ширина пояса балки b`f должна соответствовать ширине листа универсальной стали по сортаменту и быть не менее

b`f ³ 180мм, b`f ³ 0,1h; b`f ³ 0,5 bf ,

т.е., 0,1h=127,6 мм; 0,5 bf = 0,5×360 = 180 мм.

По сортаменту принимаем b`f = 200 мм.

Геометрические характеристики сечения  балки на приопорных участках:

- площадь сечения

Информация о работе Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания