Автор работы: Пользователь скрыл имя, 01 Марта 2013 в 02:18, доклад
Генотерапия – совокупность генно-инженерных (биотехнологических) и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний (Ст. 2 Федерального закона от 05.07.96 N 86–ФЗ «О государственном регулировании в области генно-инженерной деятельности»).
Это новая и бурно развивающаяся область, ориентированная на исправление дефектов, вызванных мутациями (изменениями) в структуре ДНК, или придания клеткам новых функций.
Генотерапия – совокупность генно-инженерных
Это новая и бурно развивающаяся
область, ориентированная на исправление
дефектов, вызванных мутациями (
Основная проблема генной терапии – разработка эффективного и безопасного способа переноса необходимых генов в дефектные клетки организма.
Известно, что почти все заболевания так или иначе связаны с нарушением работы генов, т.е. с негативными мутациями. И генная терапия как один из подходов молекулярной медицины направлена на то, чтобы так или иначе восстановить контроль за работой и функцией гена. В одних случаях, когда больные клетки потеряли функцию какого–либо гена, ее необходимо восстановить. Осуществляется это путем физического переноса гена в организм и далее в клетку. В других случаях, когда болезнь вызывается избыточной функцией, не свойственной нормальной клетке (например, при раке или инфекционных заболеваниях), работу гена надо подавить.
Принципиальное отличие генной терапии от любой другой в том, что она направлена на устранение не симптомов заболевания, а его первопричины. В недалеком будущем благодаря созданию генетической карты каждого отдельного человека можно будет предсказать, а, значит, и предотвратить вероятную предрасположенность к заболеваниям. Некоторые из них уже сегодня могут служить объектом генной терапии (табл.1).
История развития генотерапии
Идеи о возможности введения в организм генов с лечебной целью были высказаны еще в начале 60–х годов минувшего века, однако реальные попытки такого рода относятся к концу 80–х годов и практически совпадают с развитием работ по тотальному секвенированию генома человека и созданию международной программы "Геном человека".
В 1990 г. была осуществлена попытка лечения тяжелого, обычно несовместимого с жизнью наследственного иммунологического заболевания (иммунодефицита), вызванного дефектом в гене, который кодирует синтез фермента аденозиндезаминазы (ADA). У двух девочек в возрасте до четырех лет, страдавших врожденным дефектом в гене ADA, были взяты клетки костного мозга и перенесены в так называемую культуру, то есть для них были созданы условия роста вне организма. В эти клетки ввели ген ADA. Затем трансфицированные клетки были размножены в культуре, после чего введены больным, от которых они были получены. Авторы сообщили о четко выраженном лечебном эффекте.
И хотя впоследствии возник ряд сомнений в устойчивости полученного эффекта и его конкретных механизмах, именно эта работа послужила мощнейшим толчком для развития генной терапии и вызвала феноменальный приток средств (многие миллиарды долларов США), которые обеспечили лавинообразное нарастание числа генно-терапевтических исследований. Справедливости ради следует отметить, что в последнее время появились сведения о серьезном успехе в генной терапии иммунодефицита.
В 1992 г. в США осуществили введение в клетки печени человека гена белка–рецептора, адсорбирующего липопротеины низкой плотности в гепатоциты женщины, страдающей выраженным атеросклерозом (патология была связана с дефицитом липопротеинов вследствие генных нарушений). Посредством трансфекции ген был введён в гомогенизированные клетки печени, которые затем переносили в печень пациентки. После такой процедуры состояние женщины улучшилось, хотя до пересадки «генно-инженерной печени» она перенесла инфаркт (в 16 лет) и операцию на сердце (в 26 лет).
В декабре 2008 года успешно завершились испытания на мышах терапии серповидно–клеточной анемии.
В 2009 году генотерапия успешно применена для улучшения состояния больных ВИЧ и ТКИД (тяжелый комбинированный иммунодефицит). На грызунах показана эффективность генотерапии в терапии хронической боли и некоторых видов глухоты и слепоты. В настоящее время разрабатывается генотерапия для редкого и тяжелого заболевания – фибродисплазия. Происходит это в Университете штата Пенсильвания, при участии генетиков всего мира.
В 2011 году пациент, проходивший лечение в 2007 и 2008 годах у Геро Хюттера был излечен от ВИЧ методом повторной трансплантации гематопоэтических стволовых клеток с двойной дельта-32 мутацией, которая отключает рецептор CCR5. Методы этого лечения, которые требовали полного удаления существующего костного мозга пациента, что было очень изнурительной процедурой, не были приняты медицинским сообществом вплоть до 2011 года.
В 2012 году учёные из испанского Национального онкологического научного центра (CNIO) под руководством его директора Марии Бласко доказали, что продолжительность жизни мышей можно увеличить однократным введением препарата, непосредственно воздействующего на гены животного во взрослом состоянии. Они сделали это с помощью генной терапии – стратегии ещё ни разу не использовавшейся для борьбы со старением. Применение этого метода на мышах признано безопасным и эффективным. Мыши, получавшие терапию в возрасте одного года, жили дольше в среднем на 24 %, а в возрасте двух лет – на 13 %. Кроме того, лечение привело к значительному улучшению состояния здоровья животных, задержав развитие возрастных заболеваний – таких как остеопороз и резистентность к инсулину – и улучшив такие показатели старения, как нервно–мышечная координация. Это исследование «показывает, что можно разработать антивозрастную генную терапию на основе теломеразы без увеличения заболеваемости раком», утверждают его авторы. Таким образом, генная терапия становится одним из перспективных направлений нарождающейся в настоящее время терапевтической сферы радикального продления жизни и остановки старения.
История состояния на сегодня и прогноз развития на обозримую перспективу генных технологий в медицине.
Рекомбинантные белки |
Генная диагностика |
Последовательность генома |
Генная вакцинация |
Генная терапия |
Искусственные органы |
Внутриклеточная иммунизация |
Белковая инженерия |
Генная инженерия человека |
Современные исследования в области генной терапии могут быть разделены на ряд относительно независимых этапов: разработка генных конструкций, проведение на экспериментальных животных так называемых предклинических испытаний и, наконец, осуществление прямых попыток лечения отдельных болезней. Ежегодно проводятся десятки международных конгрессов и конференций. В то же время реальные успехи генной терапии в лечении конкретных больных достаточно скромны, и генная терапия все еще находится в стадии накопления данных и развития новых технологий.
В настоящее время в мире проводится множество клинических испытаний по генной терапии тех или иных заболеваний (рис.1). За прошедшие годы генная терапия испытала целый ряд подъемов и падений, которые были вызваны широко разрекламированными, но не оправдавшимися ожиданиями. Это связано в первую очередь с тем, что коммерциализация и применение технологий стали опережать процесс познания законов природы. Развитие генной терапии можно сравнить с эволюцией биотехнологии, которая в начале 80–х находилась в глубочайшем кризисе, а теперь занимает ведущее положение наравне с информатикой.
Рис.1.
Диаграммы количественного
Подходы генотерапии
Сегодня на различных стадиях разработки находится более двухсот клинических протоколов генной терапии. Как это реализуется практически? В генной терапии достаточно четко можно выделить три принципиальных подхода: лечение классических наследственных болезней, “хирургическая” генная терапия и лечение массовых патологий. Они различаются особенностями участия в них наследственного аппарата человека.
1) Классические наследственные болезни (в основном моногенные) характеризуются дефектом гена, который имеется во всех клетках организма. Этот дефект и ведет к патологии. Одна (но конкретная) нуклеотидная замена в гене глобина приводит к серповидноклеточной анемии; выпадение фрагмента гена глобина – к талассемии и т. д. Нарушен только один ген. Все остальное в организме не нарушено. И, теоретически, если ввести в клетки полноценный ген, то он обеспечит синтез полноценного продукта, наступит радикальное излечение. Конечно, здесь имеется очень много особенностей. Но в случаях наиболее простых (и наиболее распространенных) наследственных дефектов – это так. По своим функциям гены делятся на общеклеточные (они работают во всех клетках, поддерживая их существование) и тканеспецифические. Так, гемоглобин нужен и, соответственно, вырабатывается только в эритроидных клетках. Во всех остальных он не функционирует, и для клетки не имеет значения дефектен он или нет. Поэтому достаточно полноценный ген глобина ввести только в клетки эритроидного ряда. Поскольку же они, в свою очередь, образуются из стволовых, то достаточно ввести полноценный ген (конечно, в составе адекватной молекулярной конструкции) в относительно небольшое и, главное, доступное для такой процедуры количество стволовых клеток. Через некоторое время “не то”, станет “тем”.
2) «Хирургическая» генная терапия используется при таких болезнях, которые характеризуются тем, что и гены и их регуляция в организме полноценные. Но возникла патология в генетическом аппарате локальной группы (или групп) клеток. Например, при злокачественных опухолях. Убрать бы эти клетки из организма, все до единой, и болезнь бы ушла. Для достижения такой цели в генной терапии используют своеобразный временно–локальный подход. В случае онкологических болезней из биопсийного материала отделяют и переводят в культуру опухольпроникающие лимфоциты. Их размножают, вводят в них ген, кодирующий соответствующий иммунноактивный продукт (интерлейкин 2, фактор некроза опухоли и т. д.), и возвращают в организм больного. Такие генетически трансформированные лимфоциты уничтожают опухолевые клетки. Но время жизни лимфоцитов – примерно месяц. Если за это время они уничтожают все опухолевые клетки – задача выполнена, и сами измененные лимфоциты исчезают. Если опухоль разрушена за это время только частично, процедуру повторяют. Вводимые гены можно раз от раза варьировать. И так – до победы. Гены приводящие к гибели опухоли можно вводить и в сами опухолевые клетки. Но общим принципом здесь является то, что после излечения (полного) в организме не остается и тех генетически измененных клеток, которые такое излечение обеспечили.
3) При массовых патологиях сами гены не нарушены. Но в результате каких–то, в разных случаях разных, многоуровневых и множественных событий нарушена регуляция функционирования одного или нескольких генов. Простое введение в клетки еще одного (или нескольких) таких же генов ничего не дает. Ведь и собственный ген не нарушен. А регуляция на то и регуляция, чтобы держать активность на заданном уровне. Начни все гены функционировать по максимуму своих возможностей – организм мгновенно пойдет в разнос. До такой жуткой патологии даже природа не додумалась. Тут и болезни никакой дополнительной не надо. Именно поэтому большинство генов у человека ткане- и стадиоспецифические. Они функционируют на определенной стадии индивидуального развития и только в определенных тканях, часто вообще в ограниченном числе клеток.
Остается последняя задача – ввести созданную молекулярную конструкцию в клетки организма. Принципиально это можно осуществить двумя путями. Первый путь предусматривает извлечение из организма клеток (стволовых или вообще способных к размножению), обработку их созданным генетическим материалом (если надо – с последующим отбором и подращиванием) и возвращение в организм. По второму пути молекулярная конструкция вводится непосредственно в организм – в кровь или прямой инъекцией в ткань.
Методы (виды) генотерапии
Новые подходы к генной терапии соматических клеток можно поделить на две большие категории: генная терапия ex vivo и in vivo. Разрабатываются специфические лекарственные препараты на основе нуклеиновых кислот: РНК–ферменты, модифицированные методами генной инженерии олигонуклеотиды, корректирующие генные мутации in vivo и т. д.
Генная терапия ex vivo. Поражённые клетки выделяют из организма пациента, инкубируют с вектором, после чего генно–инженерные (генетически изменённые) клетки вносят в организм. Наиболее часто метод применяют в отношении клеток крови. Это связано с простотой их выделения и последующего обратного введения.
Генная терапия in situ. В этом случае вектор вводят непосредственно в поражённые ткани. Например, пациентам с муковисцидозом аденовирусные векторы доставляют непосредственно в трахею и бронхи; в некоторые опухоли непосредственно инъецируют вектор, несущий цитокин или токсин; в мышцу больного, страдающего мышечной дистрофией, производят инъекцию вектора, несущего ген дистрофина.
Генная терапия in vivo – вектор вводят в кровоток. До настоящего времени на практике этот метод не применяли, однако метод прост и удобен, поэтому его считают наиболее перспективным.
Существует несколько способов введения новой генетической информации в клетки млекопитающих. Это позволяет разрабатывать прямые методы лечения наследственных болезней – методы генотерапии.
Генная терапия in vivo основана
на прямом введении клонированных и
определённым образом упакованных
последовательностей ДНК в
Методы генетической трансфекции в генной терапии
Решающим условием успешной генотерапии является обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужеродного гена в клетки–мишени, обеспечение длительного функционирования его в этих клетках и создание условий для полноценной работы гена (его экспрессии).
Трансфекция может проводиться с использованием чистой ("голой"–naked) ДНК, легированной (встроенной) в соответствующую плазмиду, или комплексированной ДНК. Комплексированная – плазмидная ДНК, соединённая с солями, белками (трансферрин), органическими полимерами, или ДНК в составе вирусных частиц, предварительно лишённых способности к репликации.
Информация о работе Генотерапия и генодиагностика – новая эра новой эры