Контрольная работа по генетике

Автор работы: Пользователь скрыл имя, 18 Октября 2013 в 18:33, контрольная работа

Краткое описание

1. Строение и функции ДНК и РНК
2. Эпистатическое взаимодействие генов
3. Хромосомный механизм определения пола. Первичные и вторичные признаки.
4. Мутационная изменчивость. Основные положения мутационной теории Де Фриза.
5. Внутрихромосомные перестройки и их значение в селекции и эволюции.
6. Наследование признаков в панмиктической популяции.
7. Цели, задачи, методы и достижения в селекции животных.

Вложенные файлы: 1 файл

kontr_po_genetike-1.docx

— 284.10 Кб (Скачать файл)

 

 

 

  1. Эпистатическое взаимодействие генов

 

Эпистаз (от греч. epistasis — остановка, препятствие), один из типов взаимодействия генов, при котором аллели одного гена подавляют (эпистатируют) проявление аллелей других генов. Ген-подавитель действует на подавляемый ген по принципу, близкому к доминантности - рецессивности. Разница состоит в том, что эти гены не являются аллельными, т. е. занимают различные локусы в гомологичных или негомологичных хромосомах. Различают доминантный и рецессивный эпистаз. Если обычное аллельное доминирование можно представить в виде формулы А " а, то явление эпистаза выразится формулой А " В (доминантный эпистаз) или а " В (рецессивный эпистаз), когда доминантный или рецессивный ген не допускает проявления другой аллельной пары. Гены, подавляющие действие других, неаллельных им генов, называются эпистатичными, а подавляемые - гипостатичными. Эпистатическое взаимодействие генов по своему характеру противоположно комплементарному взаимодействию. При эпистазе фермент, образующийся под контролем одного гена, полностью подавляет или нейтрализует действие фермента, контролируемого другим геном.

  1. Рассмотрим эпистатическое взаимодействие генов на примере наследования окраски зерна у овса. У этой культуры установлены гены, определяющие черную и серую окраску. Оба гена являются доминантными: ген А определяет черную окраску, ген В - серую. В первом поколении в генотипе растений содержатся доминантные гены как черной окраски А, так и серой окраски В. Так как ген А эпистатичен по отношению к гену В, он не дает ему проявиться, поэтому все гибриды в F1 будут черносеменными. В F2 происходит расщепление в соотношении 12 черных : 3 серых : 1 белый: 9 (А - В) : 3 (А - вв) : 3 (а - ВВ) : 1 (аа вв). В девяти типах зигот присутствуют оба доминантных гена А и В, но ген черной окраски А подавляет ген серой - В, вследствие чего семена имеют черную окраску. В трех сочетаниях (АА вв, Аа вв, Аа вв) присутствует только один доминантный ген А, что также обуславливает развитие черносеменных растений. Эта группа по фенотипу совершенно сходна с первой, поэтому 12 растений из 16 будут иметь черные семена. В трех сочетаниях (аа ВВ, аа Вв, аа Вв) присутствует только доминантный ген В, следовательно, все растения с такими генотипами будут серыми. Один генотип (аа вв) представляет собой новую комбинацию, в которой проявится белая окраска зерна, т. к. отсутствуют оба доминантных гена. Этот тип взаимодействия неаллельных генов называют доминантным эпистазом. В отличие от него, при рецессивном эпистазе рецессивная аллель одного гена, будучи в гомозиготном состоянии, подавляет проявление доминантной или рецессивной аллели другого гена. В этом случае вместо ожидаемого при дигибридном скрещивании расщепления (по Менделю) 9 : 3 : 3 : 1,получается соотношение 9:3:4. Эпистатическое взаимодействие генов на примере наследования окраски зерна у овса.

А – черная окраска, В – серая окраска

Р:

G: 

F1 АаВв

G: АВ, Ав, аВ, ав

F2: 9/16 А_В_ - черная окраска

3/16 А_вв – черная окраска

3/16 ввВ_ - серая окраска

1/16 аавв – белая окраска

Соотношение 12:3:1

 

  1.  При рецессивном эпистазе аллель одного гена подавляет неаллельного доминантного гена (рассмотрим на примере льна).

 

У льна аллель А определяет окрашенный венчик, аа – неокрашенный (белый), В – голубой, вв – розовый. Ген А – нужен для синтеза предшественника пигмента.

Р: ААвв х ааВВ

    розов     бел

G: А,в         а,В

    F1 АаВв - голубой

G: АВ, Ав, аВ, ав

F2: 9/16 А_В_ - голубой

3/16 А_вв – розовый

3/16 ааВ_ - белый

1/16 аавв – белый

Соотношение 9:3:4

Таким образом  гетерозиготные растения А_В_ - имеют  голубую окраску, А_вв – розовую, тогда рецессивные аллели гена а в гомозиготном состоянии подавляют синтез как голубого пигмента в генотипах ааВ_, так и розового аавв, поэтому во втором поколение мы наблюдаем такое расщепление.

 

  1. Наследование окраски оперения у кур.

 

С – черная окраска, с – белая окраска. I, i – ингибитор, I  С

 

Р: IIСС х iiсс

G: IС        iс

F1: IiСс – бел

G: IС, Iс, iС, iс

F2: 9 I_С_ - бел

     3 I_сс – бел

     3 iiС_ - черн

     1 iiсс – бел

Соотношение 13:3

У 9/16 кур I_С_ - при доминантном ингибиторе I пигмент не синтезируется. У 3/16 с генотипом I_сс и у 1/16 iiсс –отсутствует ген черной окраски, поэтому оперение белое. И только у 3/16 iiС_ окраска оперения черная, так как в генотипе есть ген окраски, а ингибитор представлен рецессивным аллелем, и т.о. во втором поколении получилось такое соотношение.

При эпистазе взаимодействие генов существенно отличается от того, какое мы наблюдаем в явлениях комплементарности. В первом случае проявление одного из генов, влияющих на развитие определенного органа, подавляет проявление другого гена, вследствие чего в потомстве проявляются признаки, свойственные родительским формам. При комплементарности, наоборот, признаки возникают в результате взаимодействия двух неаллельных пар генов.

 

  1. Хромосомный механизм определения пола

У животных, растений и человека хромосомный  механизм является начальным механизмом, определяющим пол. Согласно хромосомной  теории, пол организма определяется половыми хромосомами в момент оплодотворения. У живых организмов с хромосомным определением пола половыми хромосомами называют хромосомы, различно устроенные у мужских и женских организмов. Гены находятся в хромосомах. Диплоидный набор хромосом называют кариотипом. В женском и мужском кариотипе 23 пары (46) хромосом. 22 пары хромосом одинаковы. Их называют аутосомами. 23-я пара хромосом – половые хромосомы. По традиции половые хромосомы, в отличие от аутосом, обозначаются не порядковыми номерами, а буквами X, Y, Z или W, причём отсутствие хромосомы обозначается цифрой 0 (ноль (zero [зеро])). В женском кариотипе одинаковые XX-половые хромосомы. В мужском организме XY- половые хромосомы. Y – хромосома очень мала и содержит мало генов. Пол наследуется как менделирующий признак (по законам Менделя). Сочетание половых хромосом в зиготе определяет пол будущего организма. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы + Х-хромосома. 
Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным. Сперматозоиды дают гаметы двух видов: половина содержит 22 аутосомы + Х – половую хромосому, и половина содержит 22 аутосомы + Y – половую хромосому. Пол, образующий разные гаметы, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения и зависит от того, каким сперматозоидом будет оплодотворена данная яйцеклетка. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х – хромосому, развивается женский организм, если Y – хромосому – мужской. Как правило, при этом один из полов определяется наличием пары одинаковых половых хромосом (гомогаметный пол, XX или ZZ), а другой — комбинацией двух непарных хромосом или наличием только одной половой хромосомы (гетерогаметный пол, XY, ZW, X0, Z0). У человека, как и у большинства млекопитающих, гомогаметный пол — женский (XX), гетерогаметный пол — мужской (XY). У птиц, напротив, гетерогаметный пол — женский (ZW), а гомогаметный — мужской (ZZ). В некоторых случаях (у утконоса) пол определяется не одной, а пятью парами половых хромосом.

XY определение пола

У одного пола ядра всех соматических клеток содержат диплоидный набор аутосом 2А и две одинаковые половые хромосомы (XX). Поэтому все гаметы этого пола содержат по одной X-хромосоме. Это гомогаметный пол. У другого пола в каждой соматической клетке, помимо диплоидного набора аутосом 2А, содержатся две разные половые хромосомы Х и Y. Поэтому у него два вида гамет: X- и Y-несущие. Это гетерогаметный пол. У большинства видов животных и растений гомогаметен женский пол, а гетерогаметен мужской. Сюда относятся млекопитающие, большинство насекомых, многие рыбы, растения и др. К видам с мужской гетерогаметностью относятся и плодовые мушки рода Drosophila. Бывает два вида XY-определения пола. Один из них — как у человека: пол зависит от наличия Y-хромосомы (если она есть, генотип самца, если нет — самки). Второй — как у представителей рода Drosophila: пол определяется по соотношению числа X-хромосом и числа аутосом.

ZW определение пола

У многих других видов (птицы, некоторые  рептилии, рыбы, бабочки, ручейники, из растений — земляника) наблюдается  обратная картина — гомогаметен мужской пол (имеет две гомологичные хромосомы Z), а гетерогаметен женский (имеет одну Z-хромосому и одну состоящую в основном из гетерохроматина и потому генетически инертную W-хромосому). Вероятно, исходным для бабочек механизмом определения пола был механизм ZO самка/ZZ самец. Затем, путем хромосомных перестроек, возникла система определения пола WZ самка/ZZ самец, характерная для 98% видов бабочек.

X0 определение пола

При этом механизме определения  пола один из полов (гомогаметный) обладает двумя X-хромосомами, в то время, как второй (гетерогаметный) только одной. При этом пол определяется так же, как и у дрозофил: по соотношению числа X-хромосом и аутосом. Этот механизм определения пола обнаружен у некоторых насекомых (клопов, бабочек и др.) и круглых червей. У нематоды Caenorhabditis elegans при наборе половых хромосом XX формируется гермафродит, а при наборе ХО - самец.

Первичные и вторичные  половые признаки

Половые признаки, морфологические и функциональные признаки, определяют половую принадлежность организма. Подразделяются на первичные и вторичные. Первичные и вторичные признаки обусловлены генетически, их структура заложена уже в оплодотворенной яйцеклетке задолго до рождения ребёнка. Первичные половые признаки — это признаки, относящиеся к строению половых органов. Они закладываются в эмбриогенезе и формируются к моменту появления организма на свет. Под первичными половыми признаками понимают гонады или половые железы (семенники у самцов, яичники у самок) и другие половые органы: семявыносящие пути, яйцеводы, матку и т.д. Вторичные половые признаки не принимают непосредственного участия в репродукции, но способствуют встрече представителей двух полов. Они зависят от первичных половых признаков, развиваются под воздействием половых гормонов и появляются у человека в период полового созревания. Вторичные половые признаки, совокупность особенностей или признаков, отличающих один пол от другого (за исключением половых желёз, являющихся первичными половыми признаками). Примеры вторичных половых признаков человека: у мужчин — усы, борода, тембр голоса, выступающий хрящ на гортани («адамово яблоко»); у женщин — типичное развитие грудных желёз, форма таза, большее развитие жировой клетчатки. Вторичные половые признаки животных: характерное яркое оперение самцов птиц, пахучие железы, хорошо развитые рога, клыки у самцов млекопитающих. Вторичные половые признаки сохраняются постоянно (например, различия в размерах и пропорциях тела, окраске; грива у самцов львов и павианов, рога у самцов копытных) или появляются только на время брачных сезонов (например, окраска и брачный наряд некоторых рыб и птиц). К сезонным вторичным половым признакам относят также брачное поведение («ухаживание», турниры, строительство гнёзд и др.). Вторичные половые признаки помогают особям разного пола найти и узнать друг друга, стимулируют созревание гонад и половое поведение самок, играют важную роль в половом отборе.  Исследованиями по кастрации и пересадками половых желёз (от особи одного пола особи другого пола) показана зависимость между функцией половых желёз и развитием вторичных половых признаков у млекопитающих, птиц, земноводных и рыб. Эти опыты позволили советскому исследователю М. М. Завадовскому условно разделить вторичные половые признаки на зависимые (эусексуальные), которые развиваются в связи с деятельностью половых желёз, и независимые (псевдосексуальные), развитие которых совершается независимо от функции половых желёз. Зависимые вторичные половые признаки в случае кастрации животного не развиваются. Если к этому моменту они уже успели развиться, то постепенно они теряют своё функциональное значение и иногда совсем исчезают. В результате кастрации самцов и самок получаются в основном сходные формы; если же такой "асексуальной" особи пересадить половую железу или ввести половой гормон, то развиваются характерные зависимые вторичные половые признаки соответствующего пола. Примером таких опытов служит развитие у кастрированной курицы под влиянием мужской половой железы головного убора петуха (гребень, бородка, серёжки), петушиного голоса, самцового поведения. Независимые вторичные половые признаки, например шпоры или петушиное оперение, развиваются без участия половых гормонов, что удалось установить опытами с удалением половых желёз: у кастрированных петухов также обнаруживаются эти признаки. Помимо зависимых и независимых вторых половых признаков, выделяют ещё группу сомосексуальных, или тканеполовых, вторичных половых признаков, которые присущи только одному полу, однако не зависят от функции половых желёз; в случае кастрации половые различия по этим признакам полностью сохраняются. Эта группа вторичных половых признаков характерна для насекомых.

4.Мутационная изменчивость.Основные положения мутационной теории  Де Фриза.

 Мутационная изменчивость — изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические (радиационное излучение), химические (гербициды) и биологические (вирусы). Термин «мутация» (от лат. mutatio – изменение) долгое время использовался в биологии для обозначения любых скачкообразных изменений. Например, немецкий палеонтолог В. Вааген называл мутацией переход от одних ископаемых форм к другим. Мутацией называли также появление редких признаков, в частности, меланистических форм среди бабочек. Современные представления о мутациях сложились к началу XX столетия. Например, российский ботаник Сергей Иванович Коржинский в 1899 г. разработал эволюционную теорию гетерогенезиса, основанную на представлениях о ведущей эволюционной роли дискретных (прерывистых) изменений. Однако наиболее известной стала  мутационная  теория голландского ботаника Де Фриза (1901 г.), который ввел современное, генетическое понятие мутации для обозначения редких вариантов признаков в потомстве родителей, которые не имели этого признака.   Де Фриз разработал  мутационную  теорию на основе наблюдений за широко распространенным сорным растением – ослинником двулетним, или энотерой (Oenothera biennis). У этого растения существует несколько форм: крупноцветковые и мелкоцветковые, карликовые и гигантские. Де Фриз собирал семена с растения определенной формы, высевал их и получал в потомстве 1…2% растений другой формы. В дальнейшем было установлено, что появление редких вариантов признака у энотеры не является мутацией; данный эффект обусловлен особенностями организацией хромосомного аппарата этого растения. Кроме того, редкие варианты признаков могут быть обусловлены редкими сочетаниями аллелей (например, белая окраска оперения у волнистых попугайчиков определяется редким сочетанием aabb).

Основные положения  мутационной  теории Г. Де Фриза остаются справедливыми и по сей день и сводятся к следующему:

  1. Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.
  2. В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.
  3. Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.
  4. Вероятность обнаружения мутаций зависит от числа исследованных особей.
  5. Сходные мутации могут возникать повторно.
  6. Мутации не направлены (спонтанны), то есть мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Информация о работе Контрольная работа по генетике