Контрольная работа по генетике

Автор работы: Пользователь скрыл имя, 18 Октября 2013 в 18:33, контрольная работа

Краткое описание

1. Строение и функции ДНК и РНК
2. Эпистатическое взаимодействие генов
3. Хромосомный механизм определения пола. Первичные и вторичные признаки.
4. Мутационная изменчивость. Основные положения мутационной теории Де Фриза.
5. Внутрихромосомные перестройки и их значение в селекции и эволюции.
6. Наследование признаков в панмиктической популяции.
7. Цели, задачи, методы и достижения в селекции животных.

Вложенные файлы: 1 файл

kontr_po_genetike-1.docx

— 284.10 Кб (Скачать файл)

Мутационная изменчивость проявляется  в фенотипе, и по сути дела лишь по наличию качественно новых признаков  и свойств организма можно  предполагать ее возникновение. Изменения  фенотипа вызываются нарушением наследственных структур, которое обусловливается  влиянием различных факторов внешней  среды. Иными словами, внешняя среда, воздействуя на генотип, вызывает его  структурные изменения, приводящие к формированию новых признаков  и свойств организма. В связи  с этим исследование мутаций должно вестись с разных позиций: с точки  зрения характера изменений в  генотипе, локализации их в различных  клетках и тканях, фенотипического  выражения и эволюционной роли мутаций, а также с точки зрения природы  причинного фактора.

Существует несколько классификаций  мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные. В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные;
  • хромосомные;
  • генные.

Геномные — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точковых мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода. Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации — стойкие внезапно возникшие генетические изменения в отдельных почках растений. При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутациями.

Классификация мутаций

 

  1. По характеру изменения генома:
    • Геномные мутации – изменение числа хромосом;
    • Хромосомные мутации, или хромосомные перестройки – изменение структуры хромосом;
    • Генные мутации – изменения генов.
  1. По проявлению в гетерозиготе:
    • Доминантные мутации;
    • Рецессивные мутации.
  1. По уклонению от нормы:
    • Прямые мутации – первичные мутации;
    • Обратные мутации (риверсии) – мутации, восстанавливающие исходную структуру гена.
  1. В зависимости от причин, вызывающих мутации:
    • Спонтанные, возникающие без видимой причины, т.е. без каких-либо индуцирующих воздействий со стороны экспериментатора;
    • Индуцированные мутации;

 

Существуют  и более частные подходы к  классификации мутаций:

  1. По локализации в клетке:
    • Ядерные;
    • Цитоплазматические;
  1. По отношению к возможности наследования:
    • Генеративные, происходящие в половых клетках;
    • Соматические, происходящие в соматических клетках.

 

5.Внутрихромосомные перестройки и их значение в селекции и эволюции.

Хромосомные мутации приводят к  изменению числа, размеров и организации  хромосом, их также называют хромосомными перестройками, или хромосомными аберрациями. Хромосомные перестройки классифицируются на внутрихромосомные и межхромосомные перестройки. К внутрихромосомным перестройкам относятся делеции, дупликации и инверсии.

Делеция — это потеря (нехватка) среднего участка хромосомы вследствие ее разрыва в двух точках. Делеции отъединяют концевую часть хромосомы или происходят во внутренней ее части. При появлении концевой делеции возникают ацентрические и центрический фрагменты хромосом. Потеря ацентрического фрагмента ведет к нарушению баланса генов и к гибели клеток. При внутренней делеции,если она не приводит к гибели клетки, она передается потомкам, как правило, в гетерозиготном состоянии. В качестве модели внутренней делеции укажем, что если исходную хромосому обозначить как ряд локусов – 12345678910, то хромосома с делецией будет иметь вид 1235678910, хромосома с делецией участка 6-9 – вид 1234510  и т.д. классическим случаем делеций является пример с мутацией Notch у дрозофилы. Ее открыл К.Бриджес в 1917 г. и детально исследовал О.Мор в 1932 г. проявление мутации связано с небольшими вырезками на крыльях мухи (рис 6). 

Рис 6. Крыло дрозофилы, гетерозиготной по доминантному гену Notch, который вызывает вырезки по краю крыла.

Мутация наследуется сцеплено с  полом, будучи локализованной на участке  в левом конце Х-хромосомы. Попадая  к самцам, она их убивает, т.е. является летальной в гемизиготном состоянии. Генетический анализ мутации Notch характерно явление псевдодоминантности. Оно состоит в том, что у гетерозигот по этой нехватке проявляются рецессивные аллели ряда генов, локализованные в гомологичной хромосоме напротив нехватки. На рис 7        показано, что при скрещивании самки, гетерозиготной по мутации Notch, с белоглазым самцом все ее дочери с мутацией Notch проявляют признаки белоглазия, хотя ген этого признака является рецессивным.

Рис7. Наследование мутации Notch и явление псевдодоминирования

Это относится к целой группе генов в данном районе, что свидетельствует  о том, что появление мутации  Notch связано с утерей целой группы нормальных аллелей. После открытия генетического значения гигантских хромосом из клеток слюнных желез дрозофилы делеции в хромосомах мух с мутацией Notch были изучены под микроскопом. Эта мутация действительно оказалась нехваткой участка в левом конце Х-хромосомы. В месте нехватки при конъюгации гомологов нормальная хромосома образует петлю из участка, гомологичного нехватке (рис 8).

Рис 8. Нехватка в одном из гомологов на участке Х-хромосомы дрозофилы, несущей мутацию Notch

 Нехватки сравнительно небольших  размеров передаются потомству  через гетерозиготных особей, в  гомозиготном состоянии они, как правило, летальны. М.Демерек показал, что если гомозиготные по нехваткам клетки у дрозофилы возникают в группе соматических клеток в окружении нормальных тканей, то они все равно погибают.

Дупликация — удвоение фрагмента хромосомы — процесс, противоположный делеции. Это добавление отдельных генов или блоков генов к основному набору. При конъюгации дуплицированная хромосома также делает над нормальной хромосомой петлю, которая в отличие от делеции несет дуплицированные гены. Примером дупликации является усиление признака Ваг (полосковидные глаза) у дрозофилы при увеличении числа генов, контролирующих его. Явление дупликации генов сравнительно часто встречается в природе, и ему приписывается определенная эволюционная роль. Явление дупликации было обнаружено генетически в опытах с дрозофилой. В 1919 г. К.Бриджес нашел, что в особях, гомозиготных по определенным рецессивным аллелям, эти аллели не действует на фенотип. Генетический анализ показал наличие их нормальных аллелей в другой хромосоме. В этом случае имело место появление дупликации, когда генетический материал, кроме того, что он имелся на своем обычном месте в хромосоме, оказывался повторенным и в другой хромосоме. Генетический анализ дупликации получил полное цитологическое подтверждение правильности своих данных как на обычных метафазных хромосомах (рис 9), так и на гигантских хромосомах.

Рис 9. Дупликация участка Х-хромосомы у Drosophila melanogaster. Дупликация (D) содержит свою отдельную центромеру и потому представлена в виде отдельной дополнительной (девятой) хромосомы. Внизу – схема строения дупликации Х-хромосомы; места локализации отдельных генов; С – центромера

В структуре гигантских хромосом есть повторения, т.е. имеются блоки генов, которые дуплицированы в гаплоидном наборе. Такие повторения являются важнейшим источником эволюции новых генов. Одним из источников появления линейных повторений в хромосоме служат так называемые неравные кроссинговеры. Классическим примером неравного кроссинговера является поведение доминантного гена Bar (узкие глаза) у дрозофилы, который является дупликацией небольшого участка (16А) в правом конце Х-хромосомы. Благодаря наличию линейно повторенной дупликации в этом районе возможны конъюгации левого и правого повторений в двух гомологах (рис 10), что и ведет к неравному кроссинговеру.

Рис 10. Кроссинговер в дупликации Bar у дрозофилы. Верхний ряд – обычный кроссинговер у самок, гомозиготных по дупликации Bar. Средний ряд – неравный кроссинговер, приводящий к появлению нормальных особей и особей ультра Bar. Нижний ряд – кроссинговер в системе +/ультра Bar, приводящий к появлению двух хромосом Bar

Рис 11. Неравный кроссинговер в дупликации Bar, регистрируемый с помощью системы сигнальных генов - f  и fu. Внизу – участок хромосомы 16А, входящий в дупликацию

Это явление было открыто А.Стертевантом в 1925 г. Неравный кроссинговер после конъюгации двух хроматид со вставкой (В/В) приводит к появлению хроматиды, лишенной вставки, т.е. к риверсии в сторону нормального типа строения глаза и к другой хроматиде, которая имеет удвоенную дупликацию. Последняя получила название «дубль Бар». Факт кроссинговера в этих случаях точно регистрируется благодаря наличию маркерных генов fu (fused – сливающиеся жилки на крыле) и f (forkеd – извитые щетинки). Путем неравного кроссинговера можно получить в хромосоме два, три и большее число повторений Бар (рис 11).

Инверсии – поворот блока генов внутри хромосомы на 1800. При повороте блока генов внутри одного плеча хромосомы, когда инверсия не захватывает центромерного участка, возникает парацентрическая инверсия. В этом случае морфология хромосомы не изменяется. В случае участия в поварачиваемом блоке района центромеры мы имеем дело с перицентрической инверсией. В этом случае меняется расположение центромеры, что ведет к появлению новой структуры хромосомы. Явление инверсии также было открыто в ранних работах по генетике дрозофилы. А.Стертевант в 1926 г. нашел, что в правом плече третьей хромосомы в некоторых линиях имеется фактор G, который подавляет кроссинговер в гетерозиготах. Однако у особей, гомозиготных по самому фактору G, кроссинговер проходит нормально. Исследование обмена у таких особей показало, что в хромосоме, имеющей G-фактор, определенный участок генов повернут в обратном порядке. В мейозе и в клетках слюнных желез в результате действия сил гомологического притяжения гетерозиготные инверсии образуют картину петли (рис 12).

Информация о работе Контрольная работа по генетике