Теория эволюции

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 20:24, курс лекций

Краткое описание

История борьбы эволюционных и антиэволюционных взглядов
Еще в глубокой древности люди пытались ответить на вопрос: как возник окружающий их мир. Различные ответы на этот вопрос оформились как системы эволюционных и антиэволюционных взглядов.
Понятие «антиэволюционизм» объединяет множество бытовых представлений, религиозных, философских, научных концепций, отрицающих историческое развитие органического мира Земли под влиянием естественных причин. Таким образом, антиэволюционизм, по крайней мере, частично признает развитие органического мира, однако механизмы и закономерности этого развития предстают в искаженной (неадекватной) форме.

Вложенные файлы: 1 файл

lekcii_teoriya_evolyucii.doc

— 643.00 Кб (Скачать файл)

 

3. Мутантный  аллель доминирует над исходным (а → А). Доминантная мутация  сразу проявляется в фенотипе  и подвергается действию естественного  отбора. Эти типы мутаций встречаются  в 1000 раз реже, чем рецессивные, практически все они летальны или полулетальны; примеры таких мутаций у человека: поликистоз почек, нейрофиброматоз, множественный полипоз толстой кишки. Однако некоторые доминантные мутации могут проявляться как преадаптации; адаптивное значение может иметь черная окраска насекомых (например, у березовой пяденицы), а также позвоночных. В этом случае отбор действует подобно механическому ситу и отбирает уже готовые варианты – преадаптации.

 

4. Мутантный  аллель проявляет сверхдоминирование, частичное доминирование или кодоминирование по отношению к исходному. В данном случае мутация также сразу проявляется в фенотипе и подвергается действию отбора. Некоторые полудоминантные мутации могут иметь адаптивное значение, например, у человека полудоминантная мутация серповидноклеточной анемии в гетерозиготном состоянии обеспечивает устойчивость к малярии. В целом данная ситуация изучена недостаточно.

 

При анализе мутационного процесса у диплобионтов нужно учитывать явление множественного аллелизма. Один и тот же ген мутирует различным образом, что приводит к существованию в популяции серий множественных аллелей (например, а1, а2, а3 и т.д.). Эти аллели могут встретиться в компаунд-гетерозиготе (например, а1а2). Тогда между разными мутантными аллелями возможны все типы перечисленных выше взаимодействий. Особый случай представляет возникновение разных мутаций с одинаковым фенотипическим эффектом (например, а1а1=а2а2=а1а2).

 

Судьба мутантного аллеля в популяциях гаплобионтов и полиплоидов

 

К гаплобионтам относятся все прокариоты; водоросли и грибы в гаплоидной фазе; половые клетки животных. У многих таких организмов половое размножение отсутствует.

 

У гаплобионтов мутантный аллель обычно сразу проявляется в фенотипе и подвергается действию естественного отбора. В этом случае отбор действует подобно механическому ситу. В результате некоторые мутации сразу же приобретают адаптивный характер, например, у бактерий появляется устойчивость к лекарственным препаратам (тетрациклину, пенициллину и др.).

 

Однако довольно часто у гаплоидов наблюдается многократное дублирование (амплификация) одного и того же гена, что позволяет мутантным аллелям находиться в квазигетерозиготном состоянии. В этом случае рецессивная мутация может не проявиться в фенотипе, что делает ее недоступной для действия естественного отбора.

 

К полиплоидам относятся многие растения и некоторые животные. У автополиплоидов наблюдаются те же закономерности, что и у диплоидов, но шансы на проявление в фенотипе рецессивных мутаций еще меньше. При частоте мутации 10–6 вероятность ее фенотипического проявления у тетраплоидов равна q4 (аааа) = 10–24.

 

Мутационный процесс дополняется некоторыми специальными механизмами, способствующими сохранению мутаций или изменению экспрессии мутантных аллелей.

 

Давление мутаций

 

Одна и та же мутация с одной и той же частотой р возникает в каждом поколении. В то же время мутантный аллель может быть утрачен под воздействием случайных факторов (в т.ч. и вследствие обратных мутаций). Если не учитывать обратных мутаций, то фактическая частота мутантного аллеля нелинейно возрастает. Зависимость частоты мутантного аллеля от порядкового номера поколения может быть примерно аппроксимирована логарифмической функцией. Расчеты показывают, что частота рецессивного селективно нейтрального мутантного аллеля (и вероятность его фенотипического проявления) возрастает примерно следующим образом:

 

 

Поколения 

20 

260 

450 

750 

1250 

2100 

3550

 

q (а), ×10 –- 6 

10 

11 

12 

13 

14 

15

 

q2 (aa), ×10 – 12 

25 

99 

121 

144 

169 

196 

225

 

 

 

 

Таким образом, в длительно существующей популяции вероятность фенотипического проявления рецессивного мутантного аллеля возрастает в десятки и сотни раз за счет давления мутаций. В то же время нужно признать, что реальные популяции существуют ограниченное число поколений, поэтому давление мутаций не может принципиально изменить генетическую структуру популяций.

 

Мейотический драйв

 

Этим термином обозначают механизмы, с помощью которых мутантные гены могут избегать элиминации естественным отбором. Если такой ген одновременно обеспечивает преимущество несущей его хромосомы в течение мейоза, то процент гамет с таким геном окажется выше, чем можно было бы ожидать. Мейотический драйв – это сила, способной изменить механизм мейотического деления клетки таким образом, что соотношение производимых гетерозиготой гамет отклоняется от обычного (50 : 50). Ряд генов, обладающих таким действием, выявлен у мышей, у дрозофил.

 

Генетический импринтинг

 

При генетическом импринтинге экспрессия генов зависит от пола особи, передающей данный ген потомкам. Например, некоторый мутантный аллель, переданный матерью, будет включен у ее потомка, но такой же аллель, переданный отцом, будет инактивирован у его потомка (инактивированный аллель называется импринтным).

 

Импринтинг проявляется на разных уровнях организации генетического материала: различают импринтинг целого генома, отдельных хромосом и отдельных генов. Механизмы импринтинга интенсивно изучаются; универсальным механизмом, вероятно, является метилирование азотистых оснований. Не вызывает сомнений, что существуют особые гены, контролирующие импринтинг – импринторы, или гены молчания.

 

Прогрессирующая амплификация

 

Прогрессирующая амплификация – это особый класс мутаций, суть которых заключается в многократном повторении отдельных триплетов в некодирующих участках ДНК. Например, у нормальных людей один и тот же триплет в интронах может повторяться от 5…6 до 10…13 раз. Однако некоторые триплеты начинают повторяться сотни и тысячи раз, причем, в ряду поколений повторов становится все больше. В результате развиваются такие заболевания как болезнь Хантингтона, миотоническая дистрофия и др.

 

Рекомбинации

 

Как правило, один фенотипический признак формируется под влиянием множества генетических факторов, то есть является полигенным. Поэтому разные мутации могут взаимодействовать между собой. В результате рекомбинаций (которые имеются у всех известных групп организмов) возможны следующие эффекты взаимодействия мутаций:

 

1.       Различные способы межгенных  взаимодействий: комплементарность, эпистаз, а также различные формы полимерии: аддитивная (простое суммирование фенотипических эффектов, при котором 1+1=2) и неаддитивная (нелинейное взаимодействие, при котором 1+1≠2).

 

 

2.       Мутации в управляющих генах: ослабителях (супрессорах), усилителях (бустерах), модификаторах. Например, мутация в гене-модификаторе Х может превратить рецессивную мутацию а в доминантную.

 

Итак, для понимания значения мутационного процесса необходимо рассматривать не отдельные мутации, а все разнообразие возможных мутаций и их сочетаний в популяциях.

 

 

 

2. ДРЕЙФ  ГЕНОВ.

 

ДОПОЛНИТЕЛЬНЫЕ ЭЛЕМЕНТАРНЫЕ ЭВОЛЮЦИОННЫЕ ФАКТОРЫ

 

 

 

Дрейф генов. Случайные ненаправленные изменения частот аллелей в популяциях называются дрейфом генов в широком смысле этого слова.

 

Дрейфом генов в узком смысле слова Сьюэлл Райт назвал случайное изменение частоты аллелей при смене поколений в малых изолированных популяциях. В малых популяциях велика роль отдельных особей. Случайная гибель одной особи может привести к значительному изменению аллелофонда. Чем меньше популяция, тем больше вероятность флуктуации – случайного изменения частот аллелей. В сверхмалых популяциях по совершенно случайным причинам мутантный аллель может занять место нормального аллеля, т.е. происходит случайная фиксация мутантного аллеля.

 

В отечественной биологии случайное изменение частоты аллеля в сверхмалых популяциях некоторое время называли генетико-автоматическими (Н.П. Дубинин) или стохастическими процессами (А.С. Серебровский). Эти процессы были открыты и изучались независимо от С. Райта.

 

Дрейф генов доказан в лабораторных условиях. Например, в одном из С. Райта опытов с дрозофилой было заложено 108 микропопуляций – по 8 пар мушек в пробирке. Начальные частоты нормального и мутантного аллелей были равны 0,5. В течение 17 поколений случайным образом в каждой микропопуляции оставляли 8 пар мушек. По окончании эксперимента оказалось, что в 98 пробирках сохранился только нормальный аллель, в 10 пробирках – оба аллеля, а в 3 пробирках произошла фиксация мутантного аллеля.

 

В природных популяциях наличие дрейфа генов до сих пор не доказано. Поэтому разные эволюционисты по-разному оценивают вклад дрейфа генов в общий процесс эволюции.

 

Дрейф генов связан с утратой части аллелей и общим снижением уровня биоразнообразия. Следовательно, должны существовать механизмы, компенсирующие действие дрейфа генов.

 

Эффект Болдуина. Частным случаем дрейфа генов является эффект «бутылочного горлышка» – изменение частот аллелей в популяции.

 

Эффект бутылочного горлышка достигается за счет множества дополнительных ЭЭФ.

 

 

 

1. Популяционные  волны.

 

Популяционными волнами (волнами жизни, волнами численности) называют колебания численности природных популяций. Различают следующие типы популяционных волн:

 

1.       Апериодические с высокой амплитудой. Характерны для некоторых организмов с высокой скоростью размножения в благоприятных условиях и высокой смертностью в неблагоприятных условиях (r–стратегия). Например, у майского жука в течение 5 лет численность популяции может изменяться в 1 миллион раз!

 

2.       Апериодические и периодические  с низкой амплитудой. Характерны  для некоторых организмов с  низкой скоростью размножения  и низкой смертностью независимо  от условий (К–стратегия).

 

3.       Периодические с высокой амплитудой. Встречаются у самых разнообразных организмов. Часто носят периодический характер, например, в системе «хищник–жертва». Могут быть связаны с экзогенными ритмами. Именно этот тип популяционных волн играет наибольшую роль в эволюции.

 

Историческая справка. Выражение «волны жизни» («Wave of life»), вероятно, употребил впервые исследователь южноамериканских пампасов Хэдсон (W.H. Hudson, 1872–1873). Хэдсон отметил, что в благоприятных условиях (свет, частые ливни) сохранилась обыкновенно выгорающая растительность; обилие цветов породило обилие шмелей, затем мышей, а затем и птиц, кормившихся мышами (в т.ч.,  кукушек, аистов, болотных сов). С.С. Четвериков обратил внимание на волны жизни, отметив появление в 1903 г. в Московской губернии некоторых видов бабочек, не обнаруживаемых там на протяжении 30…50 лет. Перед этим, в 1897 г. и несколько позже, отмечалось массовое появление непарного шелкопряда, оголившего громадные площади лесов и нанесшего существенный вред плодовым садам. В 1901 г. отмечалось появление в значительном количестве бабочки–адмирала. Результаты своих наблюдений он изложил в кратком очерке «Волны жизни» (1905).

 

Если в период максимальной численности популяции (например, миллион особей) появится мутация с частотой 10–6, то вероятность ее фенотипического проявления составит 10–12. Если в период спада численности до 1000 особей носитель этой мутации совершенно случайно выживет, то частота мутантного аллеля возрастет до 10–3. Эта же частота сохранится и в период последующего подъема численности, тогда вероятность фенотипического проявления мутации составит 10–6.

 

 

 

2. Изоляция. Обеспечивает проявление эффекта  Болдуина в пространстве.

 

В большой популяции (например, с численностью миллион диплоидных особей) частота мутации порядка 10–6 означает, что примерно одна из миллиона особей является носителями нового мутантного аллеля. Соответственно, вероятность фенотипического проявления этого аллеля в диплоидной рецессивной гомозиготе составляет 10–12 (одна триллионная).

 

Если эту популяцию разбить на 1000 малых изолированных популяций по 1000 особей, то в одной из изолированных популяций наверняка окажется один мутантный аллель, и его частота составит 0,001. Вероятность его фенотипического проявления в ближайших последующих поколениях составит (10–3)2=10–6 (одна миллионная). В сверхмалых популяциях (десятки особей) вероятность проявления мутантного аллеля в фенотипе возрастает до (10–2)2=10–4 (одна десятитысячная).

 

Таким образом, лишь за счет изоляции малых и сверхмалых популяций шансы на фенотипическое проявление мутации в ближайших поколениях возрастут в тысячи раз. В то же время, трудно предположить, чтобы в разных малых популяциях совершенно случайно проявился в фенотипе один и тот же мутантный аллель. Скорее всего, каждая малая популяция будет характеризоваться высокой частотой одного или немногих мутантных аллелей: или a, или b, или c и т.д.

 

 

 

3. Эффект  основателя

 

Эффект основателя представляет собой частный случай совместного действия изоляции и популяционных волн.

 

Популяция в период становления может состоять из немногих аллогамных особей, потомства одной оплодотворенной самки и даже одной автогамной особи. Тогда из-за объективной ошибки выборки частота мутантного аллеля может оказаться очень высокой. Эта же частота сохранится и в период последующего становления численности популяции.

 

Эффект основателя доказан для популяций человека (например, для религиозных сект) и многих островных видов (например, дрозофилы, некоторых птиц).

 

 

 

Некоторые дополнительные элементарные эволюционные факторы

 

Миграции, или поток генов. В основе миграции генов лежат межпопуляционные обмены носителями генетической информации: особями, пыльцой и различными диаспорами. Предположим, что в одной из малых популяций под воздействием перечисленных элементарных эволюционных факторов сложилась высокая частота аллеля а, а в другой – аллеля b. При нарушении изоляции происходят межпопуляционные обмены, и в результате обе малые популяции будут содержать и а, и b.

 

Инбридинг. При инбридинге возможно скрещивание организмов с близкими генотипами (крайним случаем инбридинга является автогамия – самооплодотворение). Тогда вероятность фенотипического проявления мутации значительно возрастает (при самооплодотворении она достигает 0,25). Инбридинг усиливает действие всех ЭЭФ.

Информация о работе Теория эволюции