Дыхание растений

Автор работы: Пользователь скрыл имя, 10 Декабря 2013 в 20:39, реферат

Краткое описание

Дыхание — процесс универсальный. Оно является неотъемлемым свойством всех организмов, населяющих нашу планету, и присуще любому органу, любой ткани, каждой клетке, которые дышат на протяжении всей своей жизнедеятельности. Дыхание всегда связано с жизнью, тогда как прекращение дыхания — с гибелью живого.
Жизнь организма в целом, как и каждое проявление жизнедеятельности, необходимо связаны с расходованием энергии. Клеточное деление, рост, развитие и размножение, поглощение и передвижение воды и питательных веществ, разнообразные синтезы и все другие процессы и функции осуществимы лишь при постоянном удовлетворении обусловленных ими потребностей в энергии и пластических веществах, которые служат клетке строительным материалом.

Содержание

Введение

1. Дыхание. Определение. Уравнение. Значение дыхания в жизни растительного организма. Специфика дыхания у растений

2. Основные этапы становления учения о дыхании растений


3.Каталитические системы дыхания

4.Основные пути диссимиляции углерода

5. Цепь переноса водорода и электрона (дыхательная цепь). Комплексы переноса электронов. Окислительное фосфорилирование. Хемиосмотическая теория окисления и фосфорилирования. Механизмы сопряжения процесса транспорта электронов с образованием АТФ

6.АТФ как основная энергетическая валюта клетки, её структура и функции. Механизмы синтеза АТФ

7. Митохондрии как органоиды дыхания. Их структура и функции

8. Генетическая связь дыхания и брожения. Связь дыхания и фотосинтеза. Взаимосвязь дыхания с другими процессами обмена

9. Количественные показатели газообмена

10.Регуляция процесса дыхания. Зависимость дыхания от внутренних факторов

11.Зависимость процесса дыхания от факторов внешней среды

Вложенные файлы: 1 файл

1.docx

— 538.23 Кб (Скачать файл)

Энергетический выход гликолиза. При окислении одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. При этом за счет первого и второго субстратного фосфорилирования образуются четыре молекулы АТФ. Однако две молекулы АТФ тратятся на фосфорилирование гексозы на I этапе гликолиза. Таким образом, чистый выход гликолитического субстратного фосфорилирования составляет две молекулы АТФ.

Кроме того, на II этапе гликолиза  на каждую из двух молекул фосфотриоз восстанавливается по одной молекуле НАДH. Окисление одной молекулы НАДH в электронтранспортной цепи митохондрий  в присутствии 0сопряжено с синтезом трех молекул АТФ, а в расчете на две триозы (т. е. на одну молекулу глюкозы) - шесть молекул АТФ. Таким образом, всего в процессе гликолиза (при условии последующего окисления НАДН) образуются восемь молекул АТФ. Поскольку свободная энергия гидролиза одной молекулы АТФ во внутриклеточных условиях составляет около 41,868 кДж/моль (10 ккал), восемь молекул АТФ дают 335 кДж/моль, или 80 ккал. Таков полный энергетический выход гликолиза в аэробных условиях.

Обращение гликолиза. Возможность обращения гликолиза определяется обратимостью действия большинства ферментов, катализирующих его реакции. Однако реакции фосфорилирования глюкозы и фруктозы, а также реакция образования пировиноградной кислоты из фосфоенолпирувата, осуществляемые с помощью киназ, необратимы. На этих участках процесс обращения идет благодаря использованию обходных путей. Там, где функционируют гексокиназа и фруктокиназа, происходит дефосфорилирование — отщепление фосфатных групп фосфатазами.

Превращение пирувата в фосфоенолпируват также не может осуществиться  путем прямого обращения пируваткиназной  реакции вследствие большого перепада энергии. Первая реакция обращения  гликолиза на этом участке катализируется митохондриальной пируваткарбоксилазой в присутствии АТФ и ацетил-СоА (последний выполняет функции  активатора). Образующаяся щавелевоуксусная кислота (ЩУК), или оксалоацетат, восстанавливается  затем в митохондриях до малата при  участии НАД-зависимой малатдегидрогеназы (МДГ). Затем малат транспортируется из митохондрий в цитоплазму, где  окисляется НАД-зависимой цитоплазматической малатдегидрогеназой снова до ЩУК. Далее под действием ФЕП-карбоксикиназы из оксалоацетата образуется фосфоенолпируват. Фосфорилирование в этой реакции  осуществляется за счет АТФ.

Значение гликолиза в клетке. В аэробных условиях гликолиз выполняет ряд функций: 1) осуществляет связь между дыхательными субстратами и циклом Кребса; 2) поставляет на нужды клетки две молекулы АТФ и две молекулы НАДH при окислении каждой молекулы глюкозы (в условиях аноксии гликолиз, по-видимому, служит основным источником АТФ в клетке); 3) производит интермедиа, необходимые для синтетических процессов в клетке (например, фосфоенолпируват, необходимый для образования фенольных соединений и лигнина); 4) в хлоропластах гликолитические реакции обеспечивают прямой путь для синтеза АТФ, независимый от поставок НАДФH; кроме того, через гликолиз в хлоропластах запасенный крахмал метаболизируется в триозы, которые затем экспортируются из хлоропласта.

Регуляция гликолиза.

Интенсивность гликолиза  контролируется в нескольких участках. Вовлечение глюкозы в процесс  гликолиза регулируется на уровне Фермента гексокиназы по типу обратной связи: избыток продукта реакции (глюкозо-6-фосфата) аллостерически подавляет деятельность фермента.

Второй участок регуляции  скорости гликолиза находится на уровне фосфофруктокиназы. Фермент  аллостерически ингибируется высокой  концентрацией АТФ и активируется неорганическим фосфатом и АДФ. Ингибирование  АТФ предотвращает развитие реакции  в обратном направлении при высокой  концентрации фруктозо-6-фосфата. Кроме  того, фермент подавляется продуктом  цикла Кребса — цитратом и через  положительную обратную связь активируется собственным продуктом — фруктозо-1,6-дифосфатом (самоусиление).

Высокие концентрации АТФ  подавляют активность пируваткиназы, снижая сродство фермента к фосфоенолпирувату. Пируваткиназа подавляется также  ацетил-СоА.

Наконец, пируватдегидрогеназный комплекс, участвующий в образовании  ацетил-СоА из пирувата, ингибируется высокими концентрациями АТФ, а также  НАДH и собственным продуктом  — ацетил-СоА.

4.1.2 Цикл Кребса. Механизмы регуляции цикла. Энергетическая  эффективность процесса, значение

В анаэробных условиях пировиноградная  кислота (пируват) подвергается дальнейшим превращениям в ходе спиртового, молочнокислого и других видов брожений, при этом НАДH используется для восстановления конечных продуктов брожения, регенерируя  в окисленную форму. Последнее обстоятельство поддерживает процесс гликолиза, для  которого необходим окисленный НАД. В присутствии достаточного количества кислорода пируват полностью окисляется до С0и Н20 в дыхательном цикле, получившем название цикла Кребса, цикла ди- или трикарбоновых кислот. Все участки этого процесса локализованы в мАТФиксе или во внутренней мембране митохондрий.

Последовательность реакций в цикле Кребса. Участие органических кислот в дыхании давно привлекало внимание исследователей. Еще в 1910 г. шведский химик Т. Тунберг показал, что в животных тканях содержатся ферменты, способные отнимать водород от некоторых органических кислот (янтарной, яблочной, лимонной). В 1935 г. А. Сент-Дьердьи в Венгрии установил, что добавление к измельченной мышечной ткани небольших количеств янтарной, фумаровой, яблочной или щавелевоуксуснсй кислот резко активирует поглощение тканью кислорода.

Учитывая данные Тунберга и Сент-Дьердьи и исходя из собственных  экспериментов по изучению взаимопревращения  различных органических кислот и  их влияния на дыхание летательной  мышцы голубя, английский биохимик Г. А. Кребс в 1937 г. предложил схему  последовательности окисления ди- и  трикарбоновых кислот до С0через «цикл лимонной кислоты» да счет отнятия водорода. Этот цикл и был назван его именем.

Непосредственно в цикле  окисляется не сам пируват, а его  производное — ацетил-СоА. Таким  образом, первым этапом на пути окислительного расщепления ПВК является процесс  образования активного ацетила  в ходе окислительного декарбоксилирования. Окислительное декарбоксилирование  пирувата осуществляется при участии  пируватдегидрогеназного мультиферментного  комплекса. В состав его входят три  фермента и пять коферментов. Коферментами служат тиаминпирофосфат (ТПФ) — фосфорилированное  производное витамина Вь липоевая кислота, коэнзим A, ФАД и НАД+. Пируват взаимодействует с ТПФ (декарбоксилазой), при этом отщепляется С0и образуется гидроксиэтильное производное ТПФ (рис. 3). Последнее вступает в реакцию с окисленной формой липоевой кислоты. Дисульфидная связь липоевой кислоты разрывается и происходит окислительно-восстановительная реакция: гидроксиэтильная группа, присоединенная к одному атому серы, окисляется в ацетильную (при этом возникает высокоэнергетическая тиоэфирная связь), а другой атом серы липоевой кислоты восстанавливается. Образовавшаяся ацетиллипоевая кислота взаимодействует с коэнзимом А, возникают ацетил- СоА и восстановленная форма липоевой кислоты. Водород липоевой кислоты переносится затем на ФАД и далее на НАД . В результате окислительного декарбоксилирования пирувата образуются ацетил-СоА, С0и НАДH.

Рис. 3. Окислительное декарбоксилирование  ПВК

Дальнейшее окисление  ацетил-СоА осуществляется в ходе циклического процесса.

Цикл Кребса начинается с  взаимодействия ацетил-СоА с енольной формой щавелевоуксусной кислоты. В  этой реакции под действием фермента цитратсинтазы образуется лимонная кислота (2). Следующий этап цикла  включает две реакции и катализируется ферментом аконитазой, или аконитатгидратазой (3). В первой реакции в результате дегидратации лимонной кислоты образуетсяцис-аконитовая. Во второй реакции аконитат гидратируется и синтезируется изолимонная кислота. Изолимонная кислота под действием НАД- или НАДФ-зависимой изоцитратдегидрогеназы (4) окисляется в нестойкое соединение — щавелевоянтарную кислоту, которая тут же декарбоксилируется с образованием α-кетоглутаровой кислоты (α-оксоглутаровой кислоты).

α-Кетоглутарат, подобно пирувату, подвергается реакции окислительного декарбоксилирования. α-Кетоглутаратдегидрогеназный  мультиэнзимный комплекс (5) сходен с  рассмотренным выше пируватдегидрогеназным комплексом. В ходе реакции окислительного декарбоксилирования α-кетоглутарата  выделяется С02, образуются НАДH и сукцинил-СоА.

 

Рис. 4. Цикл Кребса

Подобно ацетил-СоА, сукцинил-СоА  является высокоэнергетическим тиоэфиром. Однако если в случае с ацетил-СоА  энергия тиоэфирной связи расходуется  на синтез лимонной кислоты, энергия  сукцинил-CoA может трансформироватся  в образование фосфатной связи  АТФ. При участии сукцинил- СоА-синтетазы (6) из сукцинил-СоА, АДФ и Н3Р0образуются янтарная кислота (сукцинат), АТФ, регенерирует молекула СоА. АТФ образуется в результате субстратного фосфорилирования.

На следующем этапе  янтарная кислота окисляется до фумаровой. Реакция катализируется сукцинатдегидрогеназой (7), коферментом которой является ФАД. Фумаровая кислота под действием  фумаразы или фумаратгидратазы (8), присоединяя  Н20, превращается в яблочную кислоту (малат). И, наконец, на последнем этапе цикла яблочная кислота с помощью НАД- зависимой малатдегидрогеназы (9) окисляется в щавелевоуксусную. ЩУК, которая самопроизвольно переходит в енольную форму, реагирует с очередной молекулой ацетил-СоА и цикл повторяется снова. 

Следует отметить, что большинство  реакций цикла обратимы, однако ход  цикла в целом практически  необратим. Причина этого в том, что в цикле есть две сильно экзергонические реакции — цитратсинтазная  и сукцинил-СоА-синтетазная.

На протяжении одного оборота  цикла при окислении пирувата происходит выделение трех молекул  С02, включение трех молекул Н2О и удаление пяти пар атомов водорода. Роль Н2О в цикле Кребса подтверждает правильность уравнения Палладина, который постулировал, что дыхание идет с участием Н2О, кислород которой включается в окисляемый субстрат, а водород с помощью «дыхательных пигментов» (по современным представлениям — коферментов дегидрогеназ) переносится на кислород .

Выше отмечалось, что цикл Кребса был открыт на животных объектах. Существование его у растений впервые доказал английский исследователь  А. Чибнелл (1939). В растительных тканях содержатся все кислоты, участвующие  в цикле; обнаружены все ферменты, катализирующие превращение этих кислот; показано, что малонат — ингибитор  сункцинатдегидрогеназы — тормозит окисление пирувата и резко снижает  поглощение 0в процессах дыхания у растений. Большинство ферментов цикла Кребса локализовано в мАТФиксе митохондрий, аконитаза и сукцинатдегидрогеназа — во внутренней мембране митохондрии.

Энергетический  выход цикла Кребса, его связь  с азотным обменом. Цикл Кребса. играет чрезвычайно важную роль в обмене веществ растительного организма. Он служит конечным этапом окисления не только углеводов, но также белков, жиров и других соединений. В ходе реакций цикла освобождается основное количество энергии, содержащейся в окисляемом субстрате, причем большая часть этой энергии не теряется для организма, а утилизируется при образовании высокоэнергетических конечных фосфатных связей АТФ.

Каков же энергетический выход  цикла Кребса? В ходе окисления  пирувата имеют место 5 дегидрирований, при этом получаются 3НАДH, НАДФH (в  случае изоцитратдегидрогеназы) и ФАДH2. Окисление каждой молекулы НАДH (НАДФH) при участии компонентов электронтранспортной цепи митохондрий дает по 3 молекулы АТФ, а окисление ФАДH— 2АТФ. Таким образом при полном окислении пирувата образуются 14 молекул АТФ. Кроме того, 1 молекула АТФ синтезируется ; в цикле Кребса в ходе субстратного фосфорилирования. Следовательно, при окислении одной молекулы пирувата может образоваться 15 молекул АТФ. А поскольку в процессе гликолиза из молекулы глюкозы возникают две молекулы пирувата, их окисление даст 30 молекул АТФ.

Итак, при окислении глюкозы  в процессе дыхания при функционировании гликолиза и цикла Кребса в  общей сложности образуются 38 молекул  АТФ (8 АТФ связаны с глико- лизом). Если принять, что энергия третьей  сложноэфирнои фосфатной связи  АТФ равняется 41,87 кДж/моль (10 ккал/моль), то энергетический выход гликолитического пути аэробного дыхания составляет 1591 кДж/моль (380 ккал/моль).

Значение цикла Кребса не ограничивается его вкладом в  энергетический обмен клетки. Не менее  важную роль играет то обстоятельство, что многие промежуточные продукты цикла используются при синтезе  различных соединений. Из кетокислот в ходе реакций переаминирования образуются аминокислоты. Для синтеза  липидов, полиизопренов, углеводов  и ряда других соединений используется ацетил-СоА.

Регуляция цикла  Кребса. Дальнейшее использование образующегося из пирувата ацетил-СоА зависит от энергетического состояния клетки. При малой энергетической потребности клетки дыхательным контролем тормозится работа дыхательной цепи, а следовательно, реакций ЦТК и образования интермедиатов цикла, в том числе оксалоацетата, вовлекающего ацетил-СоА в цикл Кребса. Это приводит к большему использованию ацетил-СоА в синтетических процессах, которые также потребляют энергию.

Особенностью регуляции  ЦТК является зависимость всех четырех  дегидрогеназ цикла (изоцитратдегидрогеназы, α-кетоглутаратдегидрогеназы, сукцинатдегидрогеназы, малатдегидрогеназы) от отношения [НАДH]/[НАД+]. Активность цитратсинтазы тормозится высокой концентрацией АТФ и собственным продуктом — цитратом. Изоцитратдегидрогеназа ингибируется НАДH и активируется цитратом. α-Кето- глутаратдегидрогеназа подавляется продуктом реакции — сукцинил-СоА и активируется аденилатами. Окисление сукцината сукцинатдегидрогеназой тормозится оксалоацетатом и ускоряется АТФ, АДФ и восстановленным убихиноном (QH2). Наконец, малатдегидрогеназа ингибируется оксалоацетатом и у ряда объектов — высоким уровнем АТФ. Однако степень участия величины энергетического заряда, или уровня адениновых нуклеотидов, в регуляции активности цикла Кребса у растений до конца не выяснена.

Информация о работе Дыхание растений