Геометрия Лобачевского и её приложения

Автор работы: Пользователь скрыл имя, 02 Сентября 2014 в 22:08, курсовая работа

Краткое описание

Целью данной работы является изучение вопросов, связанных с геометрией Лобачевского, а также применение этой геометрии на практике. В курсовой работе рассматриваются основные понятия геометрии Лобачевского, её модели, приводятся примеры теорем и показываются различные её приложения.

Вложенные файлы: 1 файл

Курсовая переделаная.docx

— 821.65 Кб (Скачать файл)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

 

 

Кафедра прикладной математики и экономической кибернетики

 

 

 

 

 

 

 

 

КУРСОВАЯ РАБОТА

 

 

по дисциплине: Линейная алгебра и аналитическая геометрия

на тему: Геометрия Лобачевского и её приложения

 

 

 

 

 

 

 

Студент

ФМ, 1-й курс, ДКК-1       Д. А. Шапель

 

 

 

Руководитель        Т.А. Бородина

 

 

 

 

 

 

 

 

 

 

 

 

МИНСК 2012

 

РЕФЕРАТ

 

Курсовая работа: 26 стр., 13 рис.,19 источников

 

НЕЕВКЛИДОВА ГЕОМЕТРИЯ, ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО, РИМАНОВА ГЕОМЕТРИЯ.

 

Объект исследования: неевклидова геометрия.

Предмет исследования: геометрия Лобачевского, как разновидность неевклидовой геометрии.

Цель: рассмотрение основных понятий геометрии Лобачевского, её теорем, моделей, примеров и различных приложений.

Методы исследования: синтез, анализ, сравнение, выведение теорем геометрии Лобачевского.

Актуальность темы: неевклидова геометрия помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии, она дает материал для размышлений – в ней не всё просто, не всё ясно с первого взгляда, чтобы её понять, нужно обладать фантазией и пространственным воображением.

Элементы научной новизны: теоретический материал представлен в форме, доступной для понимания, как учащихся школ, так и университетов, подобрана задача для применения в экономике.

Область возможного практического применения: использование работы, как дополнительной литературы, при изучении данной темы.

Автор работы подтверждает, что приведенный в ней расчётно-экономический материал правильно и объективно отражает состояние исследуемого процесса, а все заимствованные из литературных и других источников теоретические, методологические и методические положения и концепции сопровождаются ссылками на их авторов.

__________________

 

СОДЕРЖАНИЕ

 

 

 

 

Введение

 

Геометрия – это одна из древнейших наук. Исследовать различные пространственные формы издавна побуждало людей их практическая деятельность. Как наука, геометрия впервые сформировалась в Древней Греции, когда геометрические закономерности и зависимости, найденные ранее опытным путем, были приведены в надлежащую систему и доказаны. В III веке до нашей эры греческий ученый Евклид привел в систему известные ему геометрические сведения в большом сочинении «Начала». Эта книга более двух тысяч лет служила учебником геометрии во всем мире.

Открытие того, что евклидова геометрия не является единственно возможной, сделанное в начале прошлого века Гауссом, Лобачевским и Больяи, оказало влияние на мировоззрение человечества, сравнимое с влиянием таких великих открытий естественных наук, как гелиоцентрическая система Коперника или эволюционная теория Дарвина. Начиная с конца прошлого века неевклидова геометрия, наряду с евклидовой, является одним из рабочих инструментов математики, несмотря на то что "пространство, в котором мы живем", в доступных нашему пониманию пределах является скорее евклидовым, чем неевклидовым.

Неевклидова геометрия появилась вследствие долгих попыток доказать V постулат Евклида, аксиому параллельности. Эта геометрия во многом удивительна, необычна и во многом не соответствует привычным для нас представлениям о реальном мире. Но в логическом отношении данная геометрия не уступает геометрии Евклида.

Если под неевклидовой геометрией понимать любую геометрию, отличную от евклидовой, то имеется необозримое множество таких геометрий. Было бы трудно сказать что-либо обо всех них сразу. В настоящей работе под термином «неевклидова геометрия» подразумевается геометрия Лобачевского. Среди геометрий, в которых имеется понятие расстояния между точками, эти две геометрии вместе с евклидовой геометрией занимают особое положение. Их можно охарактеризовать как геометрии максимальной подвижности или геометрии постоянной кривизны, они являются в известном смысле наиболее совершенными. В конце прошлого века в работах Пуанкаре и Клейна была установлена прямая связь геометрии Лобачевского с теорией функций комплексной переменной и с теорией чисел. С тех пор аппарат геометрии Лобачевского стал неотъемлемым компонентом этих разделов математики.

Целью данной работы является изучение вопросов, связанных с геометрией Лобачевского, а также применение этой геометрии на практике. В курсовой работе рассматриваются основные понятия геометрии Лобачевского, её модели, приводятся примеры теорем и показываются различные её приложения. 
1 История возникновения неевклидовой геометрии

Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение настолько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начала» оно было единственным руководством для изучающих геометрию.

«Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении.

Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства.

V постулат Евклида гласит: «и чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых».

Важнейшим недостатком системы евклидовых аксиом, включая и его постулаты, является ее неполнота, то есть недостаточность их для строго логического построения геометрии, при котором каждое предложение, если оно не фигурирует в списке аксиом, должно быть логически выведено из последних. Поэтому Евклид при доказательстве теорем не всегда основывался на аксиомах, а прибегал к интуиции, к наглядности и «чувственным» восприятиям. Например, понятию «между» он приписывал чисто наглядный характер; он молчаливо предполагал, что прямая, проходящая через внутреннюю точку окружности, непременно должна пересечь ее в двух точках. При этом он основывался только на наглядности, а не на логике. Доказательства этого факта он нигде не дал, и дать не мог, так как у него отсутствовали аксиомы непрерывности. Нет у него и некоторых других аксиом, без которых строго-логическое доказательство теорем невозможно.

Но никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже в древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.

Сам Евклид и многие ученые пытались доказать постулат о параллельных. Одни старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат. Все такие попытки оказались неудачными. Их общий недостаток в том, что в доказательстве неявно применялось какое-нибудь предположение, равносильное доказываемому постулату. Другие предлагали по-новому определить параллельные прямые или же заменить V постулат каким-либо, по их мнению, более очевидным предложением. [3]

Но многовековые попытки доказательства пятого постулата Евклида привели, в конце концов, к появлению новой геометрии, отличающейся тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой.

И одной из предпосылок геометрических открытий Н.И Лобачевского (1792-1856) был как раз его материалистический подход к проблемам познания.  Лобачевский был твердо уверен в объективном и не зависящем от человеческого сознания существовании материального мира и возможности его познания. В речи «О важнейших предметах воспитания» (Казань, 1828) Лобачевский сочувственно приводит слова Ф. Бэкона: «оставьте трудиться напрасно, стараясь извлечь из одного разума всю мудрость; спрашивайте природу, она хранит все истины и на все вопросы ваши будет отвечать вам непременно и удовлетворительно». В своем сочинении «О началах геометрии», являющимся первой публикацией открытой им геометрии, Лобачевский писал: «первые понятия, с которых начинается какая-нибудь наука, должны быть ясны и приведены к самому меньшему числу. Тогда только они могут служить прочным и достаточным основанием учения. Такие понятия приобретаются чувствами, врожденным – не должно верить».

Первые попытки Лобачевского доказать пятый постулат относятся к 1823 году. К 1826 году он пришел к убеждению в том, что V постулат не зависит от остальных аксиом геометрии Евклида и 11(23) февраля 1826 года сделал на заседании факультета казанского университета доклад «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», в котором были изложены начала открытой им «воображаемой геометрии», как он называл систему, позднее получившую название неевклидовой геометрии. Доклад 1826 г. вошел в состав первой публикации Лобачевского по неевклидовой геометрии – статьи «О началах геометрии», напечатанной в журнале Казанского университета «Казанский вестник» в 1829-1830гг.  Дальнейшему развитию и приложениям открытой им геометрии были посвящены мемуары «Воображаемая геометрия», «применение воображаемой геометрии к некоторым интегралам» и «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках» соответственно в 1835, 1836 и 1835-1838 гг. Переработанный текст «Воображаемой геометрии» появился во французском переводе в Берлине, там же в 1840г. вышли отдельной книгой на немецком языке «Геометрические исследования по теории параллельных линий» Лобачевского. Наконец, в 1855 и 1856 гг. он издал в Казани на русском и французском языках «Пангеометрию». Высоко оценил «Геометрические исследования» Гаусс, который провел Лобачевского (1842) в члены-корреспонденты Геттингенского ученого общества, бывшего по существу Академией наук ганноверского королевства. Однако в печати с оценкой новой геометрической системы Гаусс не выступил. [4]

Независимо от Лобачевского, существование новой геометрии установили великий немецкий математик Карл Фридрих Гаусс и замечательный венгерский математик Янош Бойяи, сын Фаркаша Бойяи. Названные три автора первоначально шли тем путем, который указан выше. Стремясь доказать V постулат от противного, они глубоко развили аксиоматическую систему, получающуюся при отрицании истинности V постулата, но не обнаружили при этом никаких противоречий. Однако, в противоположность своим предшественникам, эти три великих математика сделали из полученных ими результатов вывод о существовании геометрической системы, отличной от евклидовой. При этом они продолжали исследовать новую геометрию, получая дальнейшие относящиеся к ней теоремы.

Огромное впечатление, произведённое на умы математиков открытием Лобачевского, Бойяи и Гаусса, быть может, было бы несколько менее сильным, если бы люди заметили, что ещё задолго до Лобачевского они фактически уже владели содержательной геометрической схемой, отличной от традиционной геометрии Евклида, т.е. уже знали одну из неевклидовых геометрий. Однако твёрдое убеждение всех учёных в универсальности системы Евклида не позволило им оценить по достоинству тот запас знаний, которым они располагали. Именно поэтому первым примером геометрической системы, отличной от классической геометрии Евклида, считается обычно неевклидова геометрия Лобачевского. Значительно же более простая схема, по существу разработанная с большими деталями за много веков до Лобачевского, связывается обычно с именем гениального немецкого математика Бернхарда Римана, впервые обратившего внимание на родство этой схемы с классической геометрией Евклида и неевклидовой геометрией Лобачевского. Риман целиком пересмотрел основы геометрии Евклида, вместо них предложил свои собственные принципы построения геометрии, исходя из весьма общих соображений.[19]

Таким образом, основным пунктом, откуда начинается разделение геометрии на обычную евклидову (употребительную) и неевклидову (воображаемую геометрию) является, как известно, постулат о параллельных линиях. Плоскость Лобачевского — это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем — расстояния, углы), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла геометрии Лобачевского состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии геометрии Лобачевского. [5]

 

2 Геометрия Лобачевского

2.1 Основные понятия геометрии  Лобачевского

Лобачевский определяет основные понятия геометрии, не зависящие от V постулата, и, заметив, что сумма углов прямолинейного треугольника не может быть , как это имеет место у сферических треугольников, он заявляет: “Мы видели, что сумма углов прямолинейного треугольника не может быть . Остается предполагать эту сумму или . То и другое может быть принято без всякого противоречия впоследствии, от чего и происходят две Геометрии: одна, употребительная доныне по своей простоте, соглашается со всеми измерениями на самом деле; другая, воображаемая, более общая и потому затруднительная в своих вычислениях, допускает возможность зависимости линий от углов”.

Лобачевский указывает, что в “воображаемой геометрии” сумма углов треугольника всегда и две прямые могут не пересекаться в случае, когда они образуют с секущей углы, в сумме меньшие . Параллельные  прямые определяются как такие, которые не пересекаются, но могут быть получены предельным переходом из пересекающихся. Через каждую точку плоскости  проходят две прямые, параллельные данной прямой, лежащей в этой плоскости; эти прямые делят пучок прямых, проходящих через данную точку, на четыре области, в двух из которых проходят прямые, пересекающие данную прямую, а в двух – прямые, которые не пересекают эту прямую и не могут быть получены предельным переходом из пересекающихся – такие прямые называются расходящимися; параллельные прямые разграничивают пресекающие прямые от расходящихся (на рис.1 условно изображены прямые и , проведенные через точку А параллельно прямой , прямые и , проведенные через точку А и пресекающие прямую , и прямые  и , расходящиеся с прямой )

 

Рисунок 1-Аксиома Лобачевского о параллельных прямых

Информация о работе Геометрия Лобачевского и её приложения